國立清華大學命題紙

 九十三學年度
 科技管理研究所
 条(所)
 乙
 組碩士班入學考試

 科目
 微積分
 科號
 6003
 共
 2
 頁第
 1
 頁 *請在試卷【答案卷】內作答

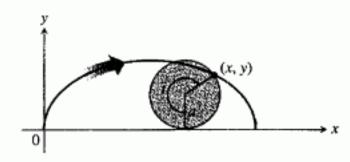
I. 填充題(共六題,每題9分,請將答案依甲,乙,丙,...,次序作答,不需演算過程)

1. Suppose
$$\lim_{x \to 1} \frac{\sqrt{ax + b} - 2}{x - 1} = 1$$
. Then $a - b = \boxed{\blacksquare}$.

2. Let
$$d \in \mathbb{R}$$
. Suppose $1 + e^d + e^{2d} + e^{3d} + \dots + e^{nd} + \dots = 9$. Then $d = \mathbb{Z}$.

3. Compute
$$\int_{-\pi/2}^{\pi/2} \frac{dx}{1 + \cos x} = \boxed{\Box}.$$

- 4. Let A be the area of the largest triangle that is symmetric (對稱) about the x-axis and can be put inside the ellipse $x^2 + 4y^2 = 1$. Then $A = ______$.



6. Let L be the line integral of $f(x, y, z) = x + \sqrt{y} - z^2$ over the path from (0, 0, 0) to (1, 1, 1) given by

$$C_1$$
: $r = (t, t^2, 0), 0 \le t \le 1,$
 C_2 : $r = (1, 1, t), 0 \le t \le 1.$

Then
$$L = \int_{C_1 \cup C_2} f(x, y, z) ds =$$
______. (Note. $ds = \sqrt{(dx)^2 + (dy)^2 + (dz)^2}$)

II.計算與証明(必須寫出演算証明過程)

1. (5%) (a) State the integral test.

(7%) (b) Show that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges if p > 1 and diverges if 0 by the**integral test**. (Note. Check the conditions.)

國立清華大學命題紙

九十三學年度<u>科技管理研究所</u>系(所)<u>乙</u>組碩士班入學考試 目 微積分 科號 6003 共 2 頁第 2 頁 *请在試卷【答案卷】內作答

Taylor's remainder theorem. The Taylor series of a function f around zero is given by

$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^{n} + R_{N}(x),$$

where $f^{(n)}$ is the n-th derivative of f, and the remainder term R_N is given by

$$R_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1}$$

for some point c between 0 and x. (Note. You do not need to prove Taylor's remainder theorem.)

Problem.

- (a) (2%) Write this series for the function e^x for a general N.
- (b) (3%) Show that for e^x ,

$$|R_N(1)| \le \frac{e}{(N+1)!}.$$

(c) (5%) Apply Taylor's remainder theorem and parts (1) and (b) to show that

$$\frac{15}{7} < e < 3$$
.

- 3. Let $f(x,y) = (y-x^2)(y-2x^2)$.
- (a) (6%) Show that f has neither a local minimum nor a local maximum at (0,0).
- (b) (6%) Show that f has a local minimum at (0,0) when considered on any fixed line through (0,0).
- 4. (12%) The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse. Apply the method of Lagrange multiplier to find the point(s) on the ellipse that lie(s) farthest (最遠) from the origin (0,0,0), see next figure.

