國立清華大學 104 學年度碩士班考試入學試題

系所班組別:計量財務金融學系碩士班 乙組(財務工程組)

考試科目 (代碼): 微積分(4604)

1. (8 pts) Let
$$S_{m,n} = \frac{m}{m+n}$$
. Find $\lim_{n\to\infty} \left(\lim_{m\to\infty} S_{m,n} \right)$ and $\lim_{m\to\infty} \left(\lim_{n\to\infty} S_{m,n} \right)$.

2. (12 pts) The Fibonacci sequence is defined by the equations

$$a_1 = a_2 = 1$$
, $a_n = a_{n-1} + a_{n-2}$ for $n \ge 3$.

Show that

$$\frac{1}{a_{n-1}a_{n+1}} = \frac{1}{a_{n-1}a_n} - \frac{1}{a_n a_{n+1}}$$

and deduce that

$$\sum_{n=2}^{\infty} \frac{1}{a_{n-1}a_{n+1}} = 1, \qquad \sum_{n=2}^{\infty} \frac{a_n}{a_{n-1}a_{n+1}} = 2.$$

3. (12 pts) If p > 0, show that

$$\int_0^1 t^p (\ln t)^2 dt = \frac{2}{(p+1)^3}.$$

4. (12 pts) Prove that the equation

$$\cos x + 2\cos 2x + \dots + n\cos nx = 0$$

has at least one real root between 0 and π .

5. (12 pts) Solve the initial value problem:

$$\frac{dy}{dx}=2^{x-2y}, \qquad y\left(0\right)=\frac{1}{2}.$$

6. (12 pts) Evaluate the integral

$$\int\int_{\mathcal{B}} e^{(x+y)/(x-y)} dx dy,$$

where R is the trapezoidal region with vertices (1,0), (2,0), (0,-2) and (0,-1).

- 7. (14 pts) Let n be a positive integer.
 - (a) Prove that

$$(1-x^2)^n \ge 1-nx^2$$
 for all $x \in [0,1]$.

(b) Prove that

$$\int_{-1}^{1} \left(1 - x^2\right)^n dx \ge \frac{4}{3\sqrt{n}}.$$

8. (18 pts) Let p and q be positive numbers such that

$$\frac{1}{p} + \frac{1}{q} = 1.$$

(a) Show that the minimum of

$$f(x,y) = \frac{x^p}{p} + \frac{y^q}{q}$$
 $(x > 0, y > 0)$

subject to the constraint xy = 1 is equal to 1.

國立清華大學104學年度碩士班考試入學試題

系所班組別:計量財務金融學系碩士班 乙組(財務工程組)

考試科目 (代碼): 微積分(4604)

共_2__頁,第_2__頁 *請在【答案卷、卡】作答

(b) Use part (a) to show that if a and b are positive numbers, then

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$

(c) Let $\{a_i\}$ and $\{b_i\}$, $i=1,2,\cdots,n$, be positive numbers. Prove Hölder's inequality:

$$\sum_{i=1}^{n} a_{i} b_{i} \leq \left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1/p} \left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1/q}.$$