B iiE A2 107 25 BEELHARANERAR
LprsEams) | REALH R AR E (RA) sE#ER (5202)
4 5 Eo¥_1__A He 555 F14%

1. (30%) Consider a school’s academic information system that keeps track of

which teachers teach which classes. We can view the entity relationships as follows:

Teacher P teaches Class

Notice that the diagram captures entities, their relationships, and cardinality.

Our database tables are structured to represent the relationships as follows:

teacher E t teacher_class >—i——H— class
id PK teacher_id PK, FK id PK
first_name class_id PK, FK name
last_name B description

Notice that the table structure captures cardinality between tables, the attribute in

tables, and primary/foreign keys (PK / FK) wherever needed.

Extend the diagrams of entity relationships and database tables above for the

following new requirement:

Teachers require one or more books for each of their classes.

The new information we need about books is as follows:
- The title of each book
- The date/time when a book was assigned by a teacher to a class
- The same book can be required in multiple classes, without duplication

Your model and database structure must accurately reflect which teacher has required
which books for which class. Specifically, your design must help to:
- Avoid duplicate assignments of the same book to the same class.
- Be robust to changes in teacher assignment: If a teacher no longer teaches a
class, we must remove the books that teacher assigned.
- Aid authorized book requirements: Teachers should only require books in

classes they teach, and can only remove book requirements they assigned.

MFEEARE 107 LEFR LIS RAANE AR
LArsEER BB ETEAS £RAE (KRHE) HEMmS (5202)
$£_ 5 R%_2 1& *Hh (B85 F1H%

N

2 (10%). The following code, written in a statically typed, object-oriented language,
uses a class called LinkedList to implement a singly linked list of instances of class
Node. Calling .head() on an instance of LinkedList returns the first Node in the list.

LinkedList linkedList = new LinkedList();
linkedList.add(new Node("A"));
linkedList.add(new Node("B"));
linkedList.add(new Node("C"));
linkedList.add(new Node("D"));
linkedList.add(new Node("E"));

Node current = linkedList.head();
Node bar = linkedList.head();
int foo = ©;

do {
foo++;
if(foo%2 == 0){
bar = bar.next();
}
current = current.next();
} while(current != null)

System.out.println(”foo is: " + foo0);
System.out.println("bar is: " + bar);

What is printed by this code?

foo is: 4 foo is: 2 foo is: 4
(A) bar is: C © bar is: B (E) bar is: E
foo is: 5 foo is: 5 foo is: 2
(B) bar is: E D) bar is: C) bar is: D

B3k # RS 107 S5 FREIEA AL RA
Lersran) C RBHEM AR FRXAB (RB) T E#MH (5202)
£ 5 HB-% 3 § 2 [B545 - F] 5%

To answer the next three questions, pick from the following data structures:

1. Hash Table 4, Linked List
2. Array 5. Binary Tree
3. Stack 6. Queue

3. (5%) Which of the above data structures do we usually use if we want to directly

retrieve any element by supplying a lookup value:

(A) 2,3,and5 (D) 3,4,and5
(B) 4and6 (E) 2,3,and5
(C) 1,2,and6 (F) 1and2

4. (5%) Which of these data structures would we use to enter a list of tasks, such
that we can retrieve and remove the tasks in the same order they were entered?
A)1 ©)3 E)5

(B)2 D)4 F)6

5. (5%) Which structure would we prefer to store the sequential order of work we
have to do today, such that we can insert or remove jobs in any order?

A)l ©3 (E)5

(B)2 (D)4)6

6. (5%) Which of these data structures would we use to create an expert system, that
asks ‘yes/no’ questions to find the answer to a problem. For example:
Do you like making your own applications (y/n)? "Y"
Do you prefer others to do the coding (y/n)? "N"
Do you prefer to work alone (y/n)? "N”"
Would you like to have your own startup (y/n)? "Y"
We recommend the following major: Service Science
(A) 1 ©3 (E)S
(B)2 D)4 F)o6

SEEKRE 10T LFEAL L RANZHAE
eraraa g RASHLH AR FRAE (RE) FEHAMBH (5202)
£ 5 HB-F% 4 R %k (B4 F] 5

7. (40%) We wish to improve the structure of our object-oriented code without

changing its behavior. You must rewrite the code on this page as follows:
- Use object-orientated principles to remove repetition in the code

- Your new code must work with existing test code (see top half of next page)

- Follow OOP syntax of the programming language (see bottom half of next page)

class Student
var name
var must_teach

def new(full_name)
name = full_name
must_teach = false
end

def notify_enroll(semester)
puts("{{name}} must enroll for classes in {{semester}}")
end
end

class Lecturer
var name
var must_teach
var must_research

def new(full_name)
name = full_name
must_teach = true
must_research = false
end

def notify_grades(semester)
puts(”{{name}} must submit grades for {{semester}}")
end
end

class Professor
var name
var must_teach
var must_research

def new(full_name)
name = full_name
must_teach = true
must_research = true
end

def notify_grades(semester)
puts("{{name}} must submit grades for {{semester}}")
end

def notify_grant(semester)
puts(”{{name}} must submit a grant in {{semester}}")
end
end

B3 RS 107 25 BATHZANZ SRR
RArstan) RAFEAE ARAE (RHB) s EAmE (5202)
*_5 A F_5 R HE (B854 F] %

Here is working test code that must still work after your refactoring:

TEST CODE

lee = Student.new('Li-Hsieh Huang')
hsu = Lecturer.new('Powei Hsu')
peggy = Professor.new('Peishan Guo')

everyone = [lee, hsu, peggy]

for person in everyone
if (not person.must_teach)
person.notify_enroll('Spring 2016"')
end

if (person.must_teach)
person.notify_grades('Fall 2015")
end

if (person.must_teach) && (person.must_research)
person.notify_grant('Spring 2016°')
end
end

TEST OUTPUT

=> Li-Hsieh Huang must enroll for classes in Spring 2016
=> Powei Hsu must submit grades for Fall 2015

=> Peishan Guo must submit grades for Fall 2015

=> Peishan Guo must submit a grant in Spring 2016

H o

Here is sample OOP code to help you understand the syntax of inheritance:

SAMPLE OOP CODE:

class Automobile
var brand # var defines a public instance variable

var mode

def new(brand_name) # new is a constructor method
brand = brand_name
mode = 'ground'’
end
end

class Car < Automobile # Car inherits from Automobile class
var model
var num_wheels

def new(brand_name)

super (brand_name) # Calls the parent’s constructor method
num_wheels = 4
end

def describe()
puts "The {{brand}} {{model}} has {{num_wheels}} wheels”
end
end

my_car = Car.new('Luxgen')
my_car.model = 'U6 Turbo'
my_car.describe

OUTPUT
=> "The Luxgen U6 Turbo has 4 wheels”

