Bl 3L iE 3 K2 106 L FE A LIS MANE R
forrsta s L ARSI FEAE (RAB) s (4802)
#$_ 4 R-%_1 R A [L5%5- F1 %

1. (10%) The following codem written ub a dynamically typed, object-oriented

language, defines a recursive function that takes a nested array as its arr parameter.

def fun_print(arr) {
if (arr.length() > 1) {
fun_print(arr[1..arr.length-1])

if arr[0].type_of(Array) {
fun_print(arr[e])

else
print(arr[e])

}

What would you expect this function to output if called as follows:

fun_print([[[’A’, 'B', 'C'11, 'D', ['E’, 'F'11)
(A)JADEBFC (C)ABCDEF (E)FEDCBA
(B)EFDABC (D)ABCEFD (F)DEFABC

2 (10%). The following code, written in a statically typed, object-oriented language,
uses a class called LinkedList to implement a singly linked list of instances of class
Node. Calling .head() on an instance of LinkedList returns the first Node in the list.

LinkedList linkedList = new LinkedList();
linkedList.add(new Node("A"));
linkedList.add(new Node("B"));
linkedList.add(new Node("C"));
linkedList.add(new Node("D"));
linkedList.add(new Node("E"));

Node current = linkedList.head();
Node bar = linkedList.head();
int foo = 0;

do {
foo++;
if(foo%2 == 0){
bar = bar.next();

3

current = current.next();
} while(current != null)
System.out.println(”foo is: " + foo);
System.out.println("bar is: " + bar);

What is printed by this code?

\ foo is: 4 foo is: 2 foo is: 4
(A) bar is: C (CD bar is: B CE) bar is: E
foo is: 5 foo is: 5 foo is: 2

(B) bar is: E D) bar is: C (¥) bar is: D

Bl L3k # K2 106 @45 AL HA RAANERA
LprFEamy) O RAFIEM R ZRAE (KRB EMRmE (4802)
£ 4 B-H_2 & h [BE5 - FIHE

To answer the next three questions, pick from the following data structures:

1. Hash Table 4. Linked List
2. Array 5. Binary Tree
3. Stack 6. Queue

3. (10%) Which of the above data structures do we usually use if we want to

directly retrieve any element by supplying a lookup value:

(A) 2,3,and 5 (D) 3,4,and5
(B) 4and6 (E) 2,3,and5
(C) 1,2,and86 (F) land?2

4. (10%) Which of these structures would we use to keep a list of recently used files,
such that we can quickly retrieve and remove files in most recently used order?

(A1 <3 (E) 3

B)2 D)4 (F) 6

5. (10%) Which of these data structures would we use to enter a list of tasks, such
that we can retrieve and remove the tasks in the same order they were entered?
A1 ©)3 (E)5

B)2 (D)4 F)6

6. (10%) Which of these data structures would we use to create an expert system,
that asks ‘yes’ and ‘no’ questions to find the answer to a problem. For example:
Do you like coding your own applications (y/n)? "Yy"
Do you prefer to work alone by yourself (y/n)? "N"
Do you like to design your own services (y/n)? "y"
Do you want to be have your own startup (y/n)? "y
We recommend the following major: Service Science
A1 ©)3 (B)5
B)2 (D)4 (F) 6

SLEE RS 106 B A LA RANE KA
Zrrsraap) C RABHELH A FRAB (RAB) I EHRmH (4802)
£ 4 BE-%_3 & e (585 F] 5E

7. (40%) This problem requires you to improve the structure of code.
You must rewrite the code below as follows:

- Use object-orientated principles to remove repetition in the code

- Your new code must continue working with existing test code (see top of next page)

- Follow the OOP syntax of the programming language (see bottom of next page)

class Student
var name
var must_teach

def new(full_name)
name = full_name
must_teach = false
end

def notify_enroll(semester)
puts(”{{name}} must enroll for classes in {{semester}}")
end
end

class Lecturer
var name
var must_teach
var must_research

def new(full_name)
name = full_name
must_teach = true
must_research = false
end

def notify_grades(semester)
puts("{{name}} must submit grades for {{semester}}"”)
end
end

class Professor
var name
var must_teach
var must_research

def new(full_name)
name = full_name
must_teach = true
must_research = true
end

def notify_grades(semester)
puts(”"{{name}} must submit grades for {{semester}}")
end

def notify_grant(semester)
puts(”{{name}} must submit a grant in {{semester}}")
end
end

MEFEKRE 106 2FEELHETREANLRNE
Zrrgra s | REBFAEA T ERFE (RE) 3 Esmh (4802)
£ 4 BE-%_4 ' HE (555 F] %%

Here is working test code that must still work after your refactoring:
TEST CODE

lee = Student.new('Li-Hsieh Huang')
hsu = Lecturer.new('Powei Hsu')
guo = Professor.new('Peishan Guo')

everyone = [lee, hsu, guo]

for person in everyone
if (not person.must_teach)
person.notify_enroll('Spring 2016")
end

if (person.must_teach)
person.notify_grades('Fall 2015")
end

if (person.must_teach) && (person.must_research)
person.notify_grant(’'Spring 2016")
end
end

TEST OUTPUT

=> Li-Hsieh Huang must enroll for classes in Spring 2016
=> Powei Hsu must submit grades for Fall 2015

=> Peishan Guo must submit grades for Fall 2015

=> Peishan Guo must submit a grant in Spring 2016

HHEHFEEH

Here is sample OOP code to help you understand the syntax of inheritance:

SAMPLE OOP CODE:

class Automobile
var brand # var defines a public instance variable
var mode

def new(brand_name) # new is a constructor method
brand = brand_name
mode = 'ground’
end
end

class Car < Automobile # Car inherits from Automobile class
var model
var num_wheels

def new(brand_name)

super (brand_name) # Calls the parent’s constructor method
num_wheels = 4
end

def describe()
puts "The {{brand}} {{model}} has {{num_wheels}} wheels”
end
end

my_car = Car.new('Luxgen')
my_car.model = 'U6 Turbo'’
my_car.describe

OUTPUT
=> "The Luxgen U6 Turbo has 4 wheels”

