VB EKE 105 Z2EF B TS ANSEARE
ZFTPIdHR: RIERIZWRE Z5EBH (UCHE): 5TE#EMER (4602)
#* 5 H, % 1 H *EE [BERG. R B

1. (10%) A computer has a bus with a 25 nsec cycle time, during which 1t can read
or write a 32-bit word from memory. The computer has a disk that uses the bus and
runs at 40 Mbytes/sec. The CPU normally fetches and executes one 32-bit instruction
every 25 nsec. How much does the disk slow down the CPU?

2. (10%) Which of the following services use TCP?
(1) DHCP

(1) SMTP

(ii1) HTTP

(iv) TFTP

(v) FTP

Choose one of the answers below:
(A) (1) and (11

(B) (1), (111), and (v)

(C) (i1), (1n), and (v)

(D) (1), (11), and (1v)

3. {10%) Consider the relation Movie with the following attributes:
(title, year, length, filmType, studioName, studioCountry, starName)

Show functional dependencies and how you progress from 1NF through 2NF to a set
of 3NF relations. At each stage show the primary key and any foreign keys of each
relation and state assumptions that you make about any of the relationships between

the columns of data.

B iE KA 105 BEEFME TS A NEHRE
ZPrHEAAR]: BRBEEMAR ERFBEH (ACES): sTEHEMER (4602)
* 5 H,HF 2 B R [BEREE. R EE

4. (15%) Please write pseudo code for the function described as follows.

There are 300 students, and 10 elective courses with 30 seats allowed for each
elective course. The task is to allocate students to their preferred elective courses.
Every student assigns the preference of the 10 courses from 1 to 10. Then, students
would be randomly assigned a number from 1 to 300, with student “1” allocated her
top choice. Student “2” would then get her top choice, and so on. If the top choice for
a student, say “807, is alreadv full when it gets to her round, she will then get her
second choice (if that is full too, her third choice, and so on until she gets one course
for that round). After the first round, each student would have got one course. Then
the same process goes into the second round - this time starting from the last
student, i.e. student “300. The same process goes on until all the courses are

allocated. Please state any assumptions you think necessary in writing your code.

5. (10%) The following code is written as a dynamically typed, object-oriented
language. It defines a recursive function that takes a nested array as its 'arr’

parameter.

def fun print(arr) ({
if (length(arrxr) > 1) {
fun print(arr[l..length(arr)-1])

}

if arr[0].type of(String) {
print(arxr{0] + ' ')
elsif arr[0].type of(Array)
fun print(arr{0])
}
}

What would you expect this function to output if called as follows:

fun print([[['A', 'B', '¢'71, D', ['E', 'F'1}])
(AJADEBFC (C)ABCDEF (E)FEDCBA

(BYEFDABC (D)ABCEFD (F)DEFABC

R T E B 105 2EEE VRN E
ZATPTAHR: Ak ?ﬂﬂfﬁ’i@?nﬁﬁ ZRBE (REE): TEEM R (4602)
£ 5 H, HF 3 H w2 [BRE. R EH

e

To answer the next three questions, pick from the following data structures:

1. Hash Table 4. Linked List
2. Array - 5. Binary Iree
3. Stack 6. Queue

6. (10%) Which of the above data structures do we usually expect to be indexed?

(i.e., you could directly retrieve any element by supplying an index value):

(A) 2,3,and>5 (D) 3,4,and 5
(B) 4and6 () 2,3,and 5
(C) 1,2,and 6 (F) 1and?2

7. (10%) Which of these structures would we use to keep a list of recently used files,
such that we can auickly retrieve and remove files 1 mos? recently used order?
(A) 1 (C)3 (E) 3
(B) 2 (D) 4 (F) 6

8. (10%) Which of these data structures would we use to enter a list of tasks, such
that we can retrieve and remove the tasks in the same order they were entered?

(A) 1 (C)3 (E) S

(B) 2 (D) 4 (F) 6

iﬁ“ﬁiﬁiﬂi 105 24 FHAE IS s A\ Fal 2
ZFPtA R IRBEEF AN EEBE UES): FrEEMR (4602)
A 5____,5, F_ 4 H Bk [ERE. FIES

9. (15%) The following code is written in a dynamic object-oriented programming
(OOP) language. Refactor and improve the code without changing its function! (20%)

class Student
var name
var must teach

def initialize(full_ name)

name = full name
must teach = false
end

def notify enroll(semester)
puts (" {{name}} must enroll for classes in {{semester}}")
end
end

class Lecturer
var name
var must teach
var must research

def initialize(full name)
name = full name
must teach = true
must research = false
end

def notify grades(semester)
puts("{{name}} must submit grades for {{semester}}")
end
end

class Proiessor
var name
var must_ teach
var must research

def initialize(full name)
name = full name
must teach = true
must research = true
end

def notify grades(semester)
puts("{{name}} must submit grades for {{semester}}")
end

def notify grant(semester)
puts (" {{name}} must submit a grant in {{semester}}"”)
end
end

You must rewrite the above code as follows:
- Use object-orientated principles to remove repetition in the code

- Your new code must continue working with existing test code (see top ot next page)

- Follow the OOP syntax of the programming language (see bottom of next page)

B EFERE 104 2EFETHEANSEHE
ZRTHIAER: BRBFIEFRET BRABHE (IREE): 5THE#EMEm (4602)
% 5 ®H, % 5 H *FBE (ERE. Bl EH

Here is working test code that must still work after your refactoring:

TEST CODE

lee = Student.new('Li-Hsieh Huang')
hsu Lecturer.new(Poweli Hsu')

lu = Professor.new{ ' Peishan Lu')

everyone = [lee, hsu, 1lu]

for person in everyone
if (not person.must teach)
person.notify enroll('Spring 2016)
end

1f (person.must teach)
person.notify grades('Fall 2015")
end

if (person.must teach) && (person.must research)
person.notify grant('Spring 2016 ")

end
end
TEST OUTPUT
=> Li-Hsieh Huang must enroll for classes in Spring 2015
=> Poweili Hsu must submit grades for Fall 2014
=> Peishan Lu must submit grades for Fall 2014
=> Peishan Lu must submit a grant in Spring 2015

Here is sample OOP code to help you understand the syntax of inheritance:

SAMPLE OOP CODE:

class Automobile
var brand # var defines a public instance variable
var mode

def initialize(brand name) # initialize 1is a ccnstructcr method
brand = brand name

mode = 'ground'
end
end
class Car < Automobile # Car inherits from Automobile class

var model
var num wheels

def initialize(brand name)

super (brand name) # Calls the parent’s constructor method
num wheels = 4
end

def describe()
puts "The {{brand}} {{model}} has {{num wheels}} wheels"
end
end

my car = Car.new(Luxgen')
my car.model = 'U6 Turbo’
my car.describe

OUTPUT
=> "The Luxgen U6 Turbo has 4 wheels”

