國 立 清 華 大 學 命 題 紙
95 學年度經濟學系(所)一般 組碩士班入學考試
科目微積分與統計(微積分部分)科目代碼5003 共 4頁第 1頁 *請在【答案卷卡】內作答
I. Evaluate (5 points each question)
(a)
$$I = \lim_{k \to \infty} I_k$$
, $I_k = \int_{1}^{\infty} (\frac{k}{x} - \frac{k^2}{1+kx}) dx$.
(b) $J = \int_{0}^{a} dx \int_{0}^{a - \sqrt{(a^2 - x^2)}} \frac{xe^y}{(y - a)^2} dy$, $a > 0$.

(c)
$$\frac{d}{dx} \left\{ \int_{2x}^{ex} \ln(xt) dt \right\}$$
 at $x = 1$.

II. Let $f: X \subset \mathbb{R}^n \to \mathbb{R}$.

(a) Give the definition that f is a homogeneous function of degree k in x, where $x = (x_1, ..., x_n)$. (3 points)

(b) Show that $f_i(x) = \frac{\partial f(x)}{\partial x_i}$ (i = 1, ..., n) is homogeneous of degree k-1 in x. (4 points)

(c) Prove that $\sum_{i=1}^{n} f_i(x) x_i = k f(x)$ if and only if f(x) is homogeneous of degree k in x. (6 points)

(d) Based on the homogeneous function f, give the definition of a homothetic function $g: X \subset \mathbb{R}^n \to \mathbb{R}$. (3 points) (e) Show that any homogeneous function is a homothetic function, but the converse is not true. (4 points)

III. A firm is selling a product y to two groups of consumers whose demand functions are $y_1 = p_1^{-2}$ and $y_2 = p_2^{-3}$, respectively; p_1 and p_2 are the corresponding prices, and $y = y_1 + y_2$. The firm's cost function is $c(y_1 + y_2) = 0.6(y_1 + y_2)$. (5 points each question)

(a) Find the firm's profit-maximizing levels of y_1 and y_2 if it can charge different prices in the two markets.

- (b) Find the firm's profit-maximizing levels of y_1 and y_2 if it must charge the same price in both markets.
- (c) Suppose the government decides to impose a specific tax on the firm's output. How would the tax affect the optimal y_1 and y_2 obtained in (a) and (b).

國	立	清	華	大	學	命	題	紙
95 學年度	E_經濟學	_系(所))般	_組碩士	班入學考	学 試		

科目_徵積分與統計(統計部分)科目代碼_5003 共 4 頁第 - 頁 *請在【答案卷卡】內作答

Please provide necessary work for your answers.

1. In a certain community, 8 percent of all adults over 50 have diabetes. If a health service in this community correctly diagnoses 95 percent of all persons with diabetes as having the disease and incorrectly diagnoses 2 percent of all persons without diabetes as having the disease, find the probabilities that

a. [5 points] the community health service will diagnose an adult over 50 as having diabetes;

b. [5 points] a person over 50 diagnosed by the health service as having diabetes actually has the disease.

2. The government took a survey on businesses to acquire their opinions about the imposition of a minimum tax. The government obtained the following responses by randomly surveying 20 large enterprises, 30 medium enterprises and 50 small enterprises.

	Large	Medium	Small
Agree	5	10	15
Disagree	10	15	25
Neutral	5	5	10

a. [5 points] Test if different sizes of enterprises have the same attitude toward the minimum tax at the significance level of 0.05. (Please check the attached statistical tables.)

b. [5 points] What key assumption(s) did you made when you did the test in (a)?

3. [5 points] First, we randomly draw a sample of 25 observations with the sample mean of 81 from a normal distribution with a standard error of 5. Second, we draw a sample of 12 observations with the sample mean of 77 from another normal distribution with a standard error of 6. Test the null hypothesis: $\mu_1 = \mu_2$ against the alternative hypothesis: $\mu_1 \neq \mu_2$ at the significance level of 0.06. (Please check the attached statistical tables.)

國 立 清 華 大 學 命 題 紙
95 季年度總濟學系(所)一般 無項士班入學考試
料目 微積分與執針(統計部分)科目代碼 5003共4頁第3]***訪在**[答案卷卡] 內作答
4. Suppose
$$x_1, x_2, ..., x_n$$
 are randomly drawn from the following distribution:
 $f(x; \theta) = \begin{cases} \frac{1}{\theta}e^{\frac{1}{\theta}} & \text{if } 0 < x < \infty, 0 < \theta < \infty \\ \text{else} \end{cases}$
a. [5 points] Please derive the maximum likelihood estimator of θ .
b. [10 points] Prove that the sample mean, \bar{X} , is an unbiased estimate of θ and its variance equals $\frac{\theta^2}{n}$.
5. Suppose you have run a least squares regression (with real data) and reported that
 $\hat{\beta} = \begin{bmatrix} 5\\ -4\\ 2 \end{bmatrix}$ and $\hat{\Sigma}_{\beta} = \hat{\sigma}^2 (X^*X)^{-1} = \begin{bmatrix} 3 & 1 & 1\\ 1 & 2 & 1\\ 1 & 1 & 2 \end{bmatrix}$.
a. [5 points] On the basis of this information, how would you estimate β , if you believed that
 $\hat{\beta}_i + \beta_2 = \beta_i$ and $\beta_i + \beta_j = 0$?
(Indicate the method that you would use; you need not actually carry out the computations. Define any notation that you use.)
b. [5 points] What rationale would you give for your estimator?

Cumulative Areas Under the Standard Normal Distribution

天千夏 第千頁

_ Z	0	i i	- 2	3	. 4	^行 5	6	$J_{\rm poly}$	8	9 1	1.1.1
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010	A set
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014	
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019	100
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026	
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036	
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048	
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064	
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084	
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110	5
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143	
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183	
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233	
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294	ę,
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367	
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455	
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559	
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681	
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823	
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985	
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170	
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379	
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611	
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867	
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148	

Critical Values of the Chi-Square Distribution

		Significance Level					
		.10	.05	.01			
D e g r e e s o f F r e e d o m	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	2.71 4.61 6.25 7.78 9.24 10.64 12.02 13.36 14.68 15.99 17.28 18.55 19.81 21.06 22.31 23.54 24.77 25.99 27.20 28.41 29.62 30.81 32.01 33.20	3.84 5.99 7.81 9.49 11.07 12.59 14.07 15.51 16.92 18.31 19.68 21.03 22.36 23.68 25.00 26.30 27.59 28.87 30.14 31.41 32.67 33.92 35.17 36.42	6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 21.67 23.21 24.72 26.22 27.69 29.14 30.58 32.00 33.41 34.81 36.19 37.57 38.93 40.29 41.64 42.98			
	25	34.38	37.65	44.31			
	26 27 28 29 30	35.56 36.74 37.92 39.09 40.26	38.89 40.11 41.34 42.56 43.77	45.64 46.96 48.28 49.59 50.89			

Example: The 5% critical value with df = 8 is 15.51. Source: This table was generated using the Stata[®] function invchi.