九十二學年度_______系(所)_______組碩士班研究生招生考試

科目<u>微積分與統計 科號 ゲゲル3 共 4 頁第 1 頁 *請在試卷【答案卷】內作答</u>

一、微積分(共五十分)

Instructions: Answer all questions and show all calculations.

1. a. (5 points) Suppose that x and y are independent variables and

$$r = f(x, y) = x^{2} + y^{2},$$

$$s = g(x, y) = x - y,$$

$$t = h(x, r) = 2x + r^{2},$$

$$z = m(s, t) = (s - 1)(t + 1).$$

Use chain rule to find $\partial z/\partial x$ at x = y = 1.

- b. (5 points) Assume that y(x) is a differentiable function of x and that $x^3y + y^4 = 2$. Assume that y(1) = 1. Find y''(1).
- 2. a. (5 points) Let f be defined by

$$f(x) = x\sin(1/x) \quad (x \neq 0),$$
$$= 0 \quad (x = 0)$$

Find f'(0) if it exists, otherwise show it.

b. (5 points) If f is defined by

$$f(x) = x^2 \sin(1/x) \quad (x \neq 0),$$
$$= 0 \quad (x = 0)$$

Find f'(0) if it exists, otherwise show it.

- 3. a. (5 points) Evaluate the definite integral $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$
 - b. (5 points) Evaluate $\frac{d}{dx} \left(\int_{-1}^{2x} e^{xt^2} dt \right)$ at x = 0.
- 4. For any scalar k, a real-valued function $f(x_1, \dots, x_n)$ is homogenous of degree k if $f(tx_1, \dots, tx_n) = t^k f(x_1, \dots, x_n) \text{ for all } x_1, \dots, x_n \text{ and all } t > 0. \text{ Suppose that}$

九十二學年度___經濟___系(所)_____組碩士班研究生招生考試

微積分與統計 科號 5403 共 ゲ 頁第 2 頁 *請在試卷【答案卷】

 $f(x_1,...,x_n)$ is continuously differentiable and homogeneous of degree k, prove

- a. (5 points) the first order partial derivatives of $f(x_1, \dots, x_n)$ are homogeneous of degree k-1.
- b. (5 points) for all $X = (x_1, \dots, x_n)$,

$$x_1 \frac{\partial f}{\partial x_1}(X) + x_2 \frac{\partial f}{\partial x_2}(X) + \dots + x_n \frac{\partial f}{\partial x_n}(X) = kf(X).$$

5. (10 points) Let $f(x, y) = x^3 + y^3 - 3x - 12y + 10$, find and classify the critical points of f(x, y) as yielding relative maxima, relative minima, saddle point, or none of these.

_系(所)_____組碩士班研究生招生考試

科號 5403 共 4 頁第 3 頁 *請在試卷【答案卷】內作答

統計考題(每2010分)

1. X and Y are discrete random variables with joint pdf

$$f(X,Y) = \frac{X+2Y}{18} \quad \text{when } (X,Y) = (1, 1), (1, 2), (2, 1), (2, 2)$$
$$= 0 \quad \text{for all other pairs of } X, Y.$$

- (a) Find the marginal distribution f(X) and f(Y).
- (b) Find the conditional mean and variance of Y when X = 1.
- Statisticians often deal with the mean square error (MSE) of an estimator where

$$MSE(\hat{\theta}) = E\left[\left(\hat{\theta} - \theta\right)^2\right].$$

Suppose we have 2 estimators of σ^2 for the random variable X distributed $N(\mu, \sigma^2)$:

(A)
$$\hat{\sigma}^2 = \frac{1}{N} \left[\sum_{i=1}^{N} (X_i - \overline{X})^2 \right]$$
, (B) $S^2 = \frac{1}{N} \left[\sum_{i=1}^{N} (X_i - \overline{X})^2 \right]$

Which estimator has the smaller MSE?

3. Let X have the following probability density function

$$f(X) = \pi^{1-X} (1-\pi)^X$$

Find the maximum likelihood estimator of the parameter π .

4. Consider the following formulations of the two-variable population regression function:

Model I:
$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

Model II:
$$Y_i = \alpha_1 + \alpha_2 (X_i - \overline{X}) + u_i$$

- (a) Find the estimators of β_1 and α_1 . Are they identical? Are their variances identical?
- (b) Find the estimators of β_2 and α_2 . Are they identical?

國 立 清 華 大 學 命 題 紙

5. Suppose you estimate the following regression equation:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i, R^2 = 0.89$$

and you find that you cannot reject the hypotheses that $\beta_1 = 0$, $\beta_2 = 0$, and $\beta_3 = 0$ on the basis of individual t – test.

- (a) What do you suspect the problem may be? If this is the only difficulty with the regression equation, what properties do your least squares estimators (including $\hat{\sigma}^2$) have?
- (b) In attempting to find a linear relationship among the X variables in the regression equation, you estimate the following descriptive regression:

$$X_{1i} = 6.0 + 1.1X_{2i} - 3.0X_{3i} + v_i$$
, $R^2 = 0.95$

On the basis of this regression, you decide to drop the variable X_3 from the model. What are the implications of this?

(c) Instead of dropping the variable X_3 , what will you do to correct for the problem?