- |目 | 微積分與統計 | 科號 5/03 共 3 頁第 1 頁 *請在試卷【答案卷】內作答
- 、微積分(共五十分)
- a. (5 points) (Inverse Function Theorem) Let g(z) be the inverse function of f(x). If g(z) is continuously differentiable, show that

$$g'(z) = \frac{1}{f'(g(z))}.$$

- b. (5 points) $y(x) = x^2 2x + 4$ for $x \ge 1$. Apply the Inverse Function Theorem to evaluate x'(y) at x = 2.
- a. (5 points) $\frac{d^2y}{dt^2} \frac{dy}{dt} 2y = 4e^{-t}$. Solve $\frac{dy}{dt}$.
- b. (5 points) Write down the Taylor's series of ln x about the point 1 and make use of the series to approximate ln 0.99 up to 3 decimal places.

$$f(x,y) = \begin{cases} 0 & if(x,y) = (0,0) \\ \frac{x^3y - xy^3}{x^2 + y^2} & Otherwise \end{cases}$$

- a. (5 points) Show that $(\partial f/\partial x)(0,0)$ and $(\partial f/\partial y)(0,0)$ are both 0.
- b. (5 points) Show that $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$.
- a. (5 points) Evaluate the indefinite integral $\int \frac{e^x 1}{e^x + 1} dx$.
- b. (5 points) Evaluate the indefinite integral $\int e^x \sin x dx$.
- . (10 points) $f(x, y) = 4xy x^4 y^4$. Find and classify the critical points of f(x, y) as yielding relative maxima, relative minima, saddle point, or none of these.

微検介的値計 科號 5103 共 3 頁第 2 頁 *請在試卷【答案卷】內作

二. 統計 (共五十分)

Instructions: Answer all questions and show all calculations. Point for each question is given in the margin.

 (10 points) Consider two discrete random variables X and Y with joint probability distribution:

			X	
		0	1	2
	0	0	1/4	0
Y	1	1/4	0	1/4
	2	0	1/4	0

- (a) Compute the covariance Cov(X,Y).
- (b) Are X and Y independent? Show your assertion.
- 2. (10 points) Let X have a Poisson distribution with mean E(X) = 100. The Chebyshev's inequality states: let U(X) be a non-negative function of random variable X, then $\Pr\{U(X) \ge C\} \le \frac{E[U(X)]}{C}$, where C is a positive constant. Use this to determine a lower bound for the probability Pr(75 < X < 125).
- 3. (10 points) Suppose the random variable X have the following probability density function:

$$f(x;\theta) = \theta^{2} \qquad \text{if } x = 1,$$

= $2\theta(1-\theta) \qquad \text{if } x = 2,$
= $(1-\theta)^{2} \qquad \text{if } x = 3,$

and zero elsewhere, where $0 < \theta < 1$ is the unknown parameter. If we observe three i.i.d. samples with $x_1 = 1, x_2 = 2$ and $x_3 = 1$.

- (a) Derive the likelihood function for the parameter θ.
- (b) Find the maximum likelihood estimator of θ.

九十一學年度

經濟

4. (10 points) Suppose the random variable X have the gamma distribution $G(1, \beta)$, i.e.

$$f(x) = \frac{1}{\beta} \exp\{-\frac{x}{\beta}\}, \quad x > 0, \beta > 0,$$

and zero elsewhere. Show that X has "no memory". i.e.,

 $Pr\{X > r + s \mid X > s\} = Pr\{X > r\}$ for any positive constants r and s.

(10 points) An investigator estimates the simple normal linear model

$$y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$$
 (i = 1,...,12)

by least squares, and reports the conventional 95% confidence interval (.1772, .6228) for $\beta_1 + \beta_2$, and (.0860, 2.3140) for $\beta_1 - \beta_2$.

- (a) What are the least squares estimates, b_1 and b_2 , respectively? Show your work.
- (b) What is the standard error of $b_1 + b_2$? Note: $t_{.025,10} = 2.228$