94 舉年度 切 建、天文 系 (所) 组碩士班入學考試

科目 應用製管 科目代碼 0403 共 2 頁第 / 頁 \*請在試卷【答案卷】內作答

1 (15%)

The commutator

$$[B,A] \equiv BA - AB = \lambda I$$

of two  $n \times n$  square matrices A and B is proportional to the identity matrix I.

Choose only one answer for each question.

(1) 
$$[B, A^n] = ?$$
 (A) 0; (B)  $n$ ; (C)  $n\lambda A$ ; (D)  $n\lambda A^{n-1}$ ; (E)  $n\lambda A^n$ .

(2) 
$$e^{A+B} = ?$$
 (A)  $e^A e^B$ ; (B)  $e^B e^A$ ; (C)  $e^A e^B e^{\frac{1}{2}[B,A]}$ ; (D)  $e^A e^B e^{[B,A]}$ .

(3) 
$$e^A e^B = ?$$
 (A)  $e^{A+B}$ ; (B)  $e^B e^A$ ; (C)  $e^A e^B e^{[B,A]}$ ; (D)  $e^A e^B e^{-[B,A]}$ .

2 (15%)

A matrix H is

$$H = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

- (1) Find the eigenvalues of H.
- (2) Find the eigenvectors of H and the unitary matrix which diagonalizes H.
- (3) Find the diagonalized matrices of  $H^2$ ,  $H^n$  and  $e^H$ .

3 (20%)

(1) Calculate the surface integral

$$I_1 = \int \int \vec{r} \cdot d\vec{\sigma}$$



over the surface of a torus. As shown in the figure, the inner and outer radii of the torus are  $R_i$  and  $R_o$ , respectively.

## 國立清華大學命題紙

(2) Use Stoke's theorem to calculate the integral

$$I_2 = \int_{\mathcal{C}} \vec{e}_{\theta} \cdot d\vec{r},$$

where c is a circle of radius R and  $\vec{e}_{\theta} = -\sin\theta \vec{e}_x + \cos\theta \vec{e}_y$ .

4 (20%)

Evaluate the integral

$$I = \int_0^\infty \frac{x^{1/2} dx}{1 + x^2}$$

by contour integration and show your contour and all poles and branch cuts in the complex plane. (Hint:  $\sqrt{i} = (1+i)/\sqrt{2}$ .)

5 (30%)

(1) Find the general solution of the equation

$$\frac{dy}{dx} = e^{x+y+1}.$$

(2) One of the solution of the equation

$$\left\{ (1-x^2)\frac{d^2}{dx^2} - 2x\frac{d}{dx} + 2 \right\} y = 0$$

is x. Find the second linearly independent solution of this equation.

(3) The function  $\phi(x,y)$  is given on the plane z=0. Find, for z>0, a solution  $\Psi(x,y,z)$  of Laplace's equation that reduces to  $\phi(x,y)$  on the plane z=0. (Laplace's equation:  $\nabla^2 \Psi(x,y,z)=0$ .)