九十三學年度 350322、天文 系(所) 组碩士班入學考試
科目 展 月 教 4號 0503 共 2 頁第 頁 *請在試卷【答案卷】內作答

1 (10%)

Find the both Fourier cosine and sine series of the Dirac delta function $\delta(x-x')$ in the interval [0,L].

2 (20%)

The Pauli matrices $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ are defined by

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Find

- (a) the commutator $[\sigma_i, \sigma_j] \equiv \sigma_i \sigma_j \sigma_j \sigma_i$,
- (b) the anticommutator $\{\sigma_i, \sigma_j\} \equiv \sigma_i \sigma_j + \sigma_j \sigma_i$,
- (c) $Tr(\vec{\sigma} \cdot \vec{a})$,
- (d) Tr[(σ · α)(σ · b)],
- (e) $Tr[(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})(\vec{\sigma} \cdot \vec{c})]$,

where i, j = 1, 2, 3 and $\vec{a} = (a_1, a_2, a_3)$, $\vec{b} = (b_1, b_2, b_3)$ and $\vec{c} - (c_1, c_2, c_3)$ are three constant vectors.

3 (20%)

The n-dimensional volume V_n is given by

$$V_n = \int dx_1 dx_2 \cdots dx_n$$
.

Compute the volumes of (a) n = 5 and (b) $n = \infty$ -dimensional unit spheres.

九十三學年度 300名、天文 系 (所) 组碩士班入學考試 104.63 科號 0502 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

4(20%)

Calculate the integrals:

$$(a) \quad I_a \ = \ \int_0^{2\pi} \, d\phi \, \frac{b + a \cos \phi}{a^2 + b^2 + 2ab \cos \phi} \,, \quad with \quad |b| > |a| \,,$$

(b)
$$I_b = \lim_{\epsilon \to 0^+} \int_{-\infty}^{\infty} \frac{dx}{(x^2 - a^2 - i\epsilon)^3}, \quad with \ a > 0.$$

5 (20%)

Consider the motion of a damped harmonic oscillator under the action of an external force. The differential equation reads

$$m\ddot{x} + \rho \dot{x} + kx = I \delta(t)$$
,

where I, m, ρ , and k are positive constants and $\delta(t)$ is the Dirac delta function. Solve the equation with the initial conditions:

$$x(0) = 0, \dot{x}(0) = 0.$$

6 (10%)

If n is a positive integer and $x - n \neq 0, -1, -2 \cdots$, evaluate

$$\frac{\Gamma(x+n)}{\Gamma(x-n)}$$
,

where $\Gamma(x) = \int_0^\infty t^{x-1}e^{-t} dt$ is the Gamma function.