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a) singlet and triplet states for two spins;, b} Zeeman energy
¢) Fermi Golden rule; d) Fermi energy,

e) Spherical harmonics, ¥, (6.4).

3 A one-dimensional particle of mass m is confined to a region of length 2a, 1e,
{m —a<x<da

The wavefunction of this particle at =0 1s
w, elsewhere

lr"[;r:l=
f{:'{az -;r.:1'). —a<x<a

= where is a constant to be determined.
W{I] 1 0, glsewhere

a) What are the possible measured energies of this particle?
b) What is the averaged measured energy?
¢} Evaluate the uncertainty Ax-Ap of this particle.
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Consider the scattering of a right-going particle of mass m by the potental
¥(x)= 48(x)+¥,0(x) where 4 and ¥, are constants, &(x) is a delta-function and &(x) a
step-function. The energy of the particleis E>¥,.

a) Find the probability that this particle is transmitted to the x >0 region.

b) Ewvaluate the flux, or probability current, inboth x>0 and x <0 regions.
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An electron of magnetic moment M in a magnetic field B=B? is described by the

evls ..
83, . The electron at r=0 15 mm an

Hamiltonian: H =-M -B = hao, where @=-
dme

I
eigenstate of o, with the eigenvalue of 1, i.e., o w(0)=y(0). Note that &, 2(1 .]] T
s

1
L= 1 are Pauli matnces.
U Y

a) Find the initial state {0},

b) Evaluate the expectation values (H) and {7, ) at > 0.




