九十三學年度. 生物分里		組碩士班入學考試	
科目 公分为3号 科號 04	01 共 2 頁第	頁 *請在試卷【答案卷】內4	作答

每題二十分

1 簡答題:

- a) 電子在作能階躍遷時的 selection rules,請問是如何決定的?以簡諧位能 $\frac{K}{2}x^2$ 爲例,微擾 αx (α 是常數) 所對應的 selection rule 是什麼 ?
- b) 爲什麼量物課本在前幾章總會提黑體輻射,到底它有什麼重要性?
- c) 量子穿隧(quantum tunneling)是量子力學裡一個很吸引人的現象,妳有沒有想過這是否表示密閉藥罐裡的藥,只要搖的夠用力、夠久,的確應該有可能掉出來?同樣道理,如果要妳去撞教室的牆,是不是只要橫下心,死命的撞,總有一天會出現在牆的另外一邊?請給出理由佐證你的看法。
- d) 三維空間裡的量子粒子,由於不可區分性(indistinguishability),可以分成滿足 Pauli exclusion principle 的 fermions 和不滿足的 bosons 兩種。請說明如何從不可區分性導 出這個結論?並解釋爲什麼只有這兩種可能?
- e) 爲什麼在量子力學裡,要把物理量改寫成算符形式(operators,例如動量 $\hat{p}_x = \frac{1}{i} \frac{\partial}{\partial x}$)? 它和測不準原理有什麼關連?

2 名詞解釋:

- a) singlet and triplet states for two spins; b) Zeeman energy
- Fermi Golden rule;

- d) Fermi energy;
- e) Spherical harmonics, $Y_{t,m}(\theta,\phi)$.
- A one-dimensional particle of mass m is confined to a region of length 2a, i.e., $V(x) = \begin{cases} 0, & -a < x < a \\ \infty, & \text{elsewhere} \end{cases}$ The wavefunction of this particle at t=0 is $\psi(x) = \begin{cases} C(a^2 x^2), & -a < x < a \\ 0, & \text{elsewhere} \end{cases}$ where C is a constant to be determined.
 - a) What are the possible measured energies of this particle?
 - b) What is the averaged measured energy?
 - c) Evaluate the uncertainty $\Delta x \cdot \Delta p$ of this particle.

- 4 Consider the scattering of a right-going particle of mass m by the potential $V(x) = A\delta(x) + V_0\theta(x)$ where A and V_0 are constants, $\delta(x)$ is a delta-function and $\theta(x)$ a step-function. The energy of the particle is $E > V_0$.
 - a) Find the probability that this particle is transmitted to the x > 0 region.
 - b) Evaluate the flux, or probability current, in both x > 0 and x < 0 regions.
- An electron of magnetic moment \vec{M} in a magnetic field $\vec{B} = B_z \hat{z}$ is described by the Hamiltonian: $H = -\vec{M} \cdot \vec{B} = \hbar \omega \sigma_z$ where $\omega = -\frac{egB_z}{4mc}$. The electron at t = 0 is in an eigenstate of σ_x with the eigenvalue of 1, i.e., $\sigma_x \psi(0) = \psi(0)$. Note that $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ are Pauli matrices.
 - a) Find the initial state $\psi(0)$.
 - b) Evaluate the expectation values $\langle H \rangle$ and $\langle \sigma_x \rangle$ at t > 0.