類組:物理類 科目:近代物理(2003)

共_2 第 第 ____ 頁

※請在答案卷內作答

1. (22%)

- (a) (6%) Simulate an atom by the 1-D Schrodinger equation for a single electron subject to an attraction potential $V(x) = -\alpha \cdot \delta(x)$. Please solve for the ground-state eigenfunction and eigenenergy.
- (b) (8%) Simulate a molecule by doubling the potential to $V(x) = -\alpha \cdot \delta(x) \alpha \cdot \delta(x L)$. Find all bound eigenfunctions and corresponding energies. In the limit $L \to 0$, check if the ground-state energy reduces to your answer in (a) with doubling α .
- (c) (8%) Now consider two ideal (meaning non-interacting) electrons in the double potential. Taken into account that they are spin- $\frac{1}{2}$ fermions obeying the Pauli exclusion principle, write down the total (spatial and spinor) wavefunction and its corresponding energy for the ground state and first excited state(s).

2. (24%)

Explain briefly the essential physics behind the following solid-state jargons.

- (a) (4%) The Weidemann-Franz law for the thermal and electric conductivities
- (b) (4%) How the energy band structure of a solid determines whether the material is a conductor, an insulator, or a semiconductor.
- (c) (4%) Diodes and transistors
- (d) (4%) Brillouin zone and the origin of forbidden bands
- (e) (4%) Type-I and II superconductors and the Meissner effect
- (f) (4%) The Bardeen-Cooper-Schrieffer (BCS) theory

3. (18%)

For *N*-number of ideal electrons in volume V at zero temperature, derive the expression for the following properties in terms of N, V, electron mass m_e , and the Planck constant, h.

- (a) (6%) Fermi energy (*Hint*: defined as the highest energy of an occupied state.)
- (b) (6%) Total energy of the electron gas
- (c) (6%) Quantum pressure (*Hint*: differentiate the total energy with respect to *V* and then multiply the result by -1.)

類組:物理類 科目:近代物理(2003)

共_2/頁第.2/頁

※請在答案卷內作答

4. (18%)

- (a) (4%) State the two postulates of special relativity
- (b) (6%) The muon mass is 105 MeV/ c^2 and its mean lifetime at rest is 2.2 μ s. For a mono-energetic muon beam with E_{μ} =210 GeV, what is the average distance the muons in the beam can travel before their decays?
- (c) (8%) Explain the following terms: (1) proper time, (2) Lorentz contraction, (3) four vector.

5. (18%)

Let us consider the β decay of carbon-14 $^{14}_{6}C \rightarrow ^{14}_{7}N + e^{-} + \nu_{e}$.

- (a) (6%) Denoting the masses of carbon-14, nitrogen-14 and electron as M_{C_i} , M_{N_i} , and m_{e_i} , respectively, and assume the neutrino is massless, calculate the maximal kinetic energy of the electron in the final state.
- (b) (6%) Sketch the kinetic-energy distribution of the electron.
- (c) (6%) The electron anti-neutrino $\bar{\nu}_e$ in the β decay was postulated by W. Pauli in 1930. Explain Pauli's arguments for postulating the neutrino.

· 造:背面有試題