科目: 代數(1004)

校系所組:清華大學數學系(純粹數學組)

ALGEBRA

In the problems below, \mathbb{Z} denotes the ring of integers, $\mathbb{N} = \{x \in \mathbb{Z} \mid x \geq 1\}$, \mathbb{Z}_m denotes the additive group of integers modulo a positive integer m, \mathbb{Q} (resp. \mathbb{C}) denotes the field of rational numbers (resp. complex numbers).

- (17%) 1. Let < (3,3) > be the cyclic subgroup of $\mathbb{Z}_9 \times \mathbb{Z}_6$ generated by (3,3) and let L be the quotient group $\mathbb{Z}_9 \times \mathbb{Z}_6$ / < (3,3) >. (9%) (a) Find the order |L|. (8%) (b) Prove that L is not a cyclic group.
- (20%) 2. Let G be a finite group with $|G|=p^n$ $(n \geq 2)$, where p is a prime, and let Z(G) be its center. (10%) (a) Prove that $|Z(G)|=p^k$ for some $k \geq 1$. (10%) (b) Prove that there exists a normal subgroup H of G with |H|=p.
- (23%) 3. Let $D=\{a+b\sqrt{3}\ i\ |\ a,b\in\mathbb{Z}\ \text{or}\ a=\frac{x}{2},b=\frac{y}{2}\ \text{with both}\ x\ \text{and}\ y\ \text{odd integers}\}.$ Here $\sqrt{3}\ i=\sqrt{-3}$. It is known that D is a subring of $\mathbb C$ and is a Euclidean domain relative to the norm $N(a+b\sqrt{3}\ i)=a^2+3b^2\in\mathbb Z^+=\mathbb N\cup\{0\}.$ (3%) (a) Show that $a^2+3b^2=1$ implies $a+b\sqrt{3}\ i$ is a unit in D.
 - (8%) (b) Prove that $1 + \sqrt{3} i$ is an irreducible element of D.
 - (12%) (c) Let $< 1 + \sqrt{3} \ i >$ be the ideal of D generated by $1 + \sqrt{3} \ i$. Prove that there are exactly 4 elements in the quotient ring $D \ / < 1 + \sqrt{3} \ i >$.
- (18%) 4. Let R be a commutative ring with identity.
 - (11%) (a) Let S be a non-empty multiplicative subset of R (means $x,y\in S\Rightarrow xy\in S$) such that $0\notin S$. By Zorn's lemma, \exists an ideal P such that (i) $P\cap S=\emptyset$ and (ii) for any ideal $Q\subset R$, $Q\supseteq P\Rightarrow Q\cap S\neq\emptyset$. Prove that P is a prime ideal of R.
 - (7%) (b) Prove that if $x \in R$ is an element that lies in every prime ideal of R then x is nilpotent (means $x^n = 0$ for some $n \in \mathbb{N}$).
- (22%) 5. For a prime p, let $\zeta = \cos \frac{2\pi}{p} + i \sin \frac{2\pi}{p} \in \mathbb{C}$ (so $\zeta \neq 1, \zeta^p = 1$) and let $K = \mathbb{Q}(\zeta)$ be the extension field of \mathbb{Q} generated by ζ .
 - (5%) (a) Let $u \in \mathbb{C}$ be an element such that $u^p \in K$ and also $u^m \in K$ for some $m \in \mathbb{N}$ with $1 \le m < p$. Prove that $u \in K$.
 - (5%) (b) Show that if $x^p a \in K[x]$ has a root in K then it splits over K.
 - (12%) (c) For any $a \in K$, prove that the polynomial $x^p a \in K[x]$ is either irreducible or splits over K.