科目:代 數(1004) 校系所組:清大數學系純粹數學組

- 1. [10%] Let D_n denote the dihedral group D_n of order 2n. Find the order of the center of D_n for any $n \geq 3$.
- **2.** [10%] Let H, K be subgroups of a group G. Suppose that Hx = Ky for some $x, y \in G$. Prove that H = K.
- 3. [10%] Let N, M be ideals of a ring R. The product NM of N and M is defined to be the subset of finite sums of the form

$$\sum_{i=1}^{n} x_i y_i$$

for $x_i \in N$, $y_i \in M$ and $n \in \mathbb{N}$. Prove that NM is also an ideal of R.

- 4. An element of a group G is called *torsion* if it is of finite order.
 - (1) [10%] Suppose G is abelian. Prove that the subset of torsion elements is a subgroup of G.
 - (2) [10%] Let $GL_2(\mathbb{Z})$ denote the group of invertible 2×2 matrices over \mathbb{Z} . Prove that the torsion elements of $GL_2(\mathbb{Z})$ do not form a subgroup.
- 5. Let R be an integral domain. Two elements $a,b\in R$ are called associates in R if a=bu for some unit $u\in R$.
 - (1) [10%] Prove that $-2+\sqrt{7}$ and $5-2\sqrt{7}$ are associates in the integral domain $\mathbb{Z}[\sqrt{7}]$ where

$$\mathbb{Z}[\sqrt{7}] := \{ m + n\sqrt{7} \mid m, n \in \mathbb{Z} \}.$$

- (2) [10%] Prove that an integral domain R is a field if and only if any two nonzero elements of R are associates in R.
- **6.** An automorphism of a field F is a (ring) isomorphism $\sigma \colon F \to F$ of F with itself.
 - (1) [10%] Prove that the field $\mathbb Q$ has no automorphism except the identity map.
 - (2) [10%] Prove that the field $\mathbb{Q}(\alpha)$ where $\alpha^3=2$ has no automorphism except the identity map.
 - (3) [10%] Find all automorphisms of $\mathbb{Z}_5(\alpha)$ where $\alpha^3=2$ and \mathbb{Z}_5 denotes the finite field of 5 elements.