紙 題 清 立 或

碩士班入學考試 學 系(所)

_頁第____頁 *請在【答案卷卡】內作答 科目 高等微積分 科目代碼 0201 共_

There are 8 problems (15 points for each).

1. Check whether the following limits exist and find their values.

(a)
$$\lim_{n\to\infty} \frac{\ln(n)}{1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}}$$
.

(b)
$$\lim_{n\to\infty} \frac{(n!)^{1/n}}{n}$$
.

2. Suppose $f \in C([a, b]) \cap C^1((a, b))$, f(a) = f(b) = 0 and $\lim_{x \to a+} f'(x) = \lim_{x \to b-} f'(x) > 0$ 0, show that f has at least one zero in (a, b)

3. Let $f(x,y) = \sqrt{|x^2 - y^2|}$, $x, y \in \mathbb{R}^2$. Discuss the differentiability of f on \mathbb{R}^2 .

4. Let D be a region in \mathbb{R}^2 and $u(x,y) \in C^2(D)$. Show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ on D if and only if for any ball $B \subset D$, $\int_{\partial B} (\nabla u \bullet n) ds = 0$, where n is the unit outward normal field to ∂B and ds is the arclength element.

5. Let $D = \{\frac{1}{n} : n \in \mathbb{N}\}$ and define the set in \mathbb{R}^2

$$E = ([0,1] \times \{0\}) \cup (D \times [0,1]) \cup \{(0,1)\}.$$

Explain whether E is connected or not.

6. Suppose $a_k \in \mathbb{R}$ and $|a_k| \leq k$ for every positive integer k. Let $f(x) = \sum_{k=1}^{\infty} a_k x^k$ and $f_n(x) = f(x + \frac{1}{n})$. Show that f_n converges uniformly to f on any $[a, \overline{b}] \subset (-1, 1)$.

7. Let S be the set defined by

$$S = \{(x, y, u, v) \in \mathbb{R}^4 : 3xy + y^3 + e^u + e^v = 0, \ x^3 - y^2 + e^u + e^{-v} = 0\}.$$

Show that there is a neighborhood U of (-1,1) and real-valued functions f, g such that $(x, y, f(x, y), g(x, y)) \in S$ for any $(x, y) \in U$. Find the value $\frac{\partial}{\partial x} f(-1, 1)$.

8. Evaluate the double integral

$$\iint_E e^{5x^2 + 2xy + y^2} \, dA$$

where E is the ellipse $\{(x,y) \in \mathbb{R}^2 : 5x^2 + 2xy + y^2 \le 1\}$.