國立清華大學命題紙

95 學年度 數 學 系 (所) 純 數 組 碩士班入學考試

There are 8 problems (15 points for each).

1. Check whether the following limits exist and find their values.

(a)
$$\lim_{n\to\infty} \frac{\ln(n)}{1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}}$$
.

(b)
$$\lim_{n\to\infty} \frac{(n!)^{1/n}}{n}$$
.

- 2. Suppose $f \in C([a,b]) \cap C^1((a,b))$, f(a) = f(b) = 0 and $\lim_{x\to a+} f'(x) = \lim_{x\to b-} f'(x) > 0$, show that f has at least one zero in (a,b).
- 3. Let D be a region in \mathbb{R}^2 and $u(x,y) \in C^2(D)$. Show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ on D if and only if for any ball $B \subset D$, $\int_{\partial B} (\nabla u \bullet n) ds = 0$, where n is the unit outward normal field to ∂B and ds is the arclength element.
- 4. (a) Suppose A, B are subsets of \mathbb{R}^n and $f:A\to B$ is a homeomorphism. Show that f maps the interior of A onto the interior of B.
 - (b) Use (a) to show that the closed annulus $A = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 2\}$ is not homeomorphic to the closed disc $D = \{x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$.
- 5. Suppose $a_k \in \mathbb{R}$ and $|a_k| \leq k$ for every positive integer k. Let $f(x) = \sum_{k=1}^{\infty} a_k x^k$ and $f_n(x) = f(x + \frac{1}{n})$. Show that f_n converges uniformly to f on any $[a, b] \subset (-1, 1)$.
- 6. Define $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ by $f(A) = A^T A$, where A^T denotes the transpose of A. Use the definition of derivative to find $Df(I_n)$, where I_n is the identity matrix.
- 7. Let S be the set defined by

$$S = \{(x, y, u, v) \in \mathbb{R}^4 : 3xy + y^3 + e^u + e^v = 0, \ x^3 - y^2 + e^u + e^{-v} = 0\}.$$

Show that there is a neighborhood U of (-1,1) and real-valued functions f,g such that $(x,y,f(x,y),g(x,y))\in S$ for any $(x,y)\in U$. Find the value $\frac{\partial}{\partial x}f(-1,1)$.

8. Evaluate the double integral

$$\iint_E e^{5x^2 + 2xy + y^2} \, dA$$

where E is the ellipse $\{(x,y) \in \mathbb{R}^2 : 5x^2 + 2xy + y^2 \le 1\}$.