94 學年度 數 學 系(所) 應數 組碩士班入學考試

科目 線性代數 科目代碼_0202 共_2_頁第_1__頁 *請在試卷【答案卷】內作答

Linear Algebra Examination

- 1. (25 points) Determine "true" or "false" for the following statements. Briefly sketch your proof when the answer is "true", explain why or give a counterexample when the answer is "false".
 - (a) If $A \in \mathbf{M}_{m \times n}(\mathbb{R})$, $B \in \mathbf{M}_{n \times m}(\mathbb{R})$, and $m \neq n$, then AB is singular.
 - (b) Let S, T be linear operators on an n-dimensional vector space such that ST = 0. Then $rank(S) + rank(T) \le n$.
 - (c) For any u_1 , $u_2 \in \mathbb{R}^5$, v_1 , $v_2 \in \mathbb{R}^4$, $u_1 \neq u_2$ and $v_1 \neq v_2$, there is a 4×5 matrix A such that $Au_1 = v_1$, $Au_2 = v_2$.
 - (d) Any matrix of the form $\begin{pmatrix} 1 & a & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is diagonalizable.
 - (e) Let B be obtained from $A \in M_{5\times 5}(\mathbb{C})$ by moving the *i*-th row to the (i+1)-th row, $i=1,\dots,4$, and moving the fifth row to the first row. Then $\det(A) = \det(B)$.
- 2. (15 points) Let u = (2, 1, 0), v = (3, 0, 2), w = (0, -2, 3). Suppose T is a linear operator on \mathbb{R}^3 that interchanges u and v, and maps w to (1, 0, 0). Find the matrix representation $[T]_{\beta}$ of T with respect to the standard basis $\beta = \{e_1, e_2, e_3\}$.
- 3. (18 points) Let T be a linear operator on a finite dimensional vector space V. Suppose T is idempotent; that is, $T^2 = T$. Prove that
 - (a) Eigenvalues of T are either 0 or 1.
 - (b) $V = \ker(T) \oplus \operatorname{range}(T)$.
 - (c) T is diagonalizable.
- 4. (12 points) Let T be a self-adjoint operator (that is, $T = T^*$) on \mathbb{C}^n .
 - (a) Show that all eigenvalues of T are real.
 - (b) Suppose λ , μ are distinct eigenvalues of T and E_{λ} , E_{μ} are the corresponding eigenspaces. Show that $E_{\lambda} \subset E_{\mu}^{\perp}$.
- 5. (15 points) On the space of continuous real-valued functions on [0,1], define an inner product by

 $\langle f, g \rangle = \int_0^1 f(x)g(x)dx.$

Let $f_1(x) = x$, $f_2(x) = 4x^2$. Find the orthogonal projection of g(x) = 3 + 4x on the linear subspace generated by f_1 , f_2 .

94 學年度<u>數學</u>系(所)<u>應數</u>組碩士班入學考試 科目 線性代數 科目代碼 0202 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

6. (15 points) Let $P_3(\mathbb{C})$ be the space of complex polynomials of degree less than or equal to 3. Define the linear operator T on $P_3(\mathbb{C})$ by

$$T(f) = -\frac{x^2}{2}f''' + f'' + f' - 2f.$$

Find the Jordan canonical form and minimal polynomial of T.