94 學年度_數學_系(所)_應數_組碩士班入學考試

科目 高等微積分 __科目代碼_0201共___頁第____頁 *請在試卷【答案卷】內作答

Show your work, otherwise no credit will be granted.

- 1. (15 points)
 - (a) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Is $f^{-1}(K)$ compact for every compact subset K of \mathbb{R} ?
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a function. If $f^{-1}(K)$ is compact for every compact subset K of \mathbb{R} , is f continuous on \mathbb{R} ?
- 2. (15 points) Show that the series $\sum_{k=1}^{\infty} \frac{(-1)^k}{k} x^k$ converges uniformly on [0,1].
- 3. (15 points) Define

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{x^2y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \end{cases}$$

Is f(x, y) differentiable at (0,0)? Show your reason.

- 4. (15 points) Let $f:(-1,2)\to\mathbb{R}$ be a real analytic function. If $f(\frac{1}{k})=0$ for all $k\in\mathbb{N}$, show that f is identically zero.
- 5. (15 points) Let f be a continuous function on $K = [0,1] \times [0.1] \subset \mathbb{R}^2$, show that there exists an interior point (x_0, y_0) of K such that

$$\iint_K f(x,y) \, dx \, dy = f(x_0, y_0).$$

- 6. (15 points) Let f be a continuous, bounded function on \mathbb{R} , and define $g(x) = \frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} f(y) dy$.
 - (a) Show that g is differentiable on \mathbb{R} and find g'(x).
 - (b) Show that $(1 \frac{d^2}{dx^2})g = f$.
- 7. (15 points) Show that the function

$$f(x) = \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0, \end{cases}$$

is uniformly continuous on \mathbb{R} .

8. (15 point) Evaluate the line integral

$$I = \oint_C \frac{xdy - ydx}{(x+2y)^2 + (3x-y)^2},$$

where C is the closed curve defined by $(x+2y)^2+(3x-y)^2=1$ in counterclockwise direction.