科目 代數及線性代數 科號 0102 共 1 頁第 1 頁 *請在試卷【答案卷】內作答

Algebra & Linear Algebra Exam

- 1. (16%)
 - (a) Describe all subgroups of order 4 of Z₄ × Z₂.
 - (b) How many such subgroups are cyclic? How many such subgroups are non-cyclic? Give your reasons.
- 2. (18%)
 - (a) Find a maximal ideal of the ring Z × Z.
 - (b) Find a prime ideal of Z × Z that is not a maximal ideal.
- 3. (16%) Let

$$A = \left(\begin{array}{rrrrr} 1 & 0 & -1 & 2 & 1 \\ -1 & 1 & 3 & -1 & 0 \\ -2 & 1 & 4 & -1 & 3 \\ 3 & 1 & -1 & 3 & -4 \end{array}\right).$$

Find a 5×5 real matrix M with rank(M) = 2 such that AM = 0, where 0 is the 4×5 zero matrix.

4. (18%) Let L be the line in \mathbb{R}^3 defined by the linear equations

$$\begin{cases} x_1 - x_2 + x_3 = 0 \\ x_1 + x_2 - x_3 = 0. \end{cases}$$

Let H be the plane in \mathbb{R}^3 that passes through (0,0,0) and has L as its normal line. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation that fixes L and is a rotation by 180° in the plane H. Find the matrix representation $[T]_{\beta}$ with respect to the standard basis $\beta = \{e_1, e_2, e_3\}$.

- 5. (16%) Let T: ℝ⁴ → ℝ⁴ be a diagonalizable linear transformation. Prove that ℝ⁴ is T-cyclic (means that there exists a v ∈ ℝ⁴ such that {v, T (v), T² (v), T³ (v)} is a basis of ℝ⁴) if and only if each eigenspace of T is one-dimensional.
- (16%) Let α ∈ C be algebraic over Q of degree 25. Let Q (α³) be the subfield of C by adjoining α³ to Q. Prove that α ∈ Q (α³).
- 7. (20%) Let G be the set of all n × n upper triangular real matrices with non-zero diagonal elements. It is a group under matrix multiplication (you do not have to prove this). Let H be the subgroup of G consisting of those matrices whose diagonal elements are all equal to 1.
 - (a) Prove that H is a normal subgroup of G.
 - (b) Prove that the factor group G/H is isomorphic to the direct product R* × · · · × R* (n times) where R* = R − {0} is the group under multiplication in R.