國立清華大學命題紙

 九十二學年度
 數學
 系(所)
 應用數學
 組碩士班研究生招生考試

 科目
 高等微積分
 科號
 0201
 共
 /
 頁第
 /
 頁 *請在試卷【答案卷】內作答

*Show your work, otherwise no credit will be granted.

**Each problem is worth 15 points.

1. Let S be the surface: $x^2 + y^2 + z^2 = 1$, $z \ge 0$ with unit normal \overrightarrow{n} pointing out(up)ward. Suppose that $\overrightarrow{F} = y^3 \mathbf{i} + 2yz \mathbf{j} + (x^2 + y^2 - z^2) \mathbf{k}$. Evaluate

$$\iint_S \overrightarrow{F} \cdot \overrightarrow{n} d\sigma,$$

where $d\sigma$ is the surface element.

2. Let D be a bounded closed region in \mathbb{R}^3 enclosed by the surfaces: z=2y, z=0 and $y=2-x^2$. Suppose that f(x,y,z)=x+2y+3z, find the extrema of f on D.

3. Let $f_n(x) = \cos(nx)$ on $[0, \pi]$, does the sequence $\{f_n\}_{n=1}^{\infty}$ contains a uniformly convergent subsequence? Prove or disprove it.

4. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of nonnegative continuous functions on [0,1] such that $f_n(x) \geq f_{n+1}(x)$, $n = 1, 2, \cdots$, for all $x \in [0,1]$. Let $f(x) = \lim_{n \to \infty} f_n(x)$ and $M = \sup_{0 \leq x \leq 1} f(x)$, show that there is a $t \in [0,1]$ such that f(t) = M.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

(1) If f is continuous in the ϵ - δ sense, show that $f^{-1}(C)$ is closed for any closed subset C of \mathbb{R} .

(2) If $f^{-1}(K)$ is compact for any compact subset K of \mathbb{R} , is f continuous on \mathbb{R} ? Prove it or give a counterexample.

6. Define

$$f(x,y) = \begin{cases} (x-y)^2 \sin\frac{1}{x-y}, & \text{if } x \neq y, \\ 0, & \text{if } x = y. \end{cases}$$

Is f differentiable at (0,0)? Prove or disprove it.

7. Let a, b be two positive real numbers. Evaluate

$$\lim_{k\to\infty}\left(\frac{a^{\frac{1}{k}}+b^{\frac{1}{k}}}{2}\right)^k.$$

8. Let $\sum_{k=1}^{\infty} a_k$ be a series of positive terms, and let $L_k = \frac{\ln \frac{1}{a_k}}{\ln k}$. Show that if $\lim_{k\to\infty} L_k > 1$, then the series converges.