國 立 清 華 大 學 命 題 紙

- 1. (20 points) Find the value of c so that the system of linear equations $\begin{cases} x+y+z=1\\ x-y+z=6\\ x+5y+z=c \end{cases}$ has solutions in \mathbb{R}^3 , and in that case, find all the solutions.
- 2.(16 points) Let G be a finite group with order $|G| = p^4q$, where p, q are distinct primes. Suppose that its center Z(G) satisfies |Z(G)| = q.
 - (a) Prove that any p-Sylow subgroup H of G is isomorphic to G/Z(G).
 - (b) Prove that the group G is isomorphic to the direct product $H \times Z(G)$.
- 3.(22 points) (a) Let A be an $m \times n$ real matrix, B an $n \times p$ real matrix. Prove that $rank(AB) \ge rankA + rankB n$.
 - (b) Use (a) to show that if $A_1, ..., A_k$ are $n \times n$ real matrices satisfying $A_1 \cdot ... A_k = 0$, then $rankA_1 + ... + rankA_k \leq (k-1)n$.
- 4.(20 points) Let H be a group and let A = Aut(H), the group of all automorphisms of H under composition. Define a product on the set $G = \{(f, x) : f \in A, x \in H\}$ by $(f, x) \cdot (g, y) = (f \circ g, g^{-1}(x) \cdot y)$.
- (a) Prove that G is a group under this product. and that $\{(id, x) : x \in H\}$ is a normal subgroup of G.
- (b) For $H = \mathbb{Z}_4$, find $Aut(\mathbb{Z}_4)$. Describe the group G above for $H = \mathbb{Z}_4$ by finding a minimal set of generators and giving the relations among them.
- 5.(12 points) If a is a complex number satisfying p(a) = 0, where $p(x) = x^3 + x + \sqrt{2}$, prove that a is algebraic over $\mathbb Q$ (field of rational numbers) of degree 6.

國 立 清 華 大 學 命 題 紙

- 6.(30 points) For each of the following statements, sketch a proof if it is true, explain why or give a counterexample if it is false.
- (a) If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation satisfying $T^4 = -I$, then n has to be even.
- (b) Let A, B be real symmetric $n \times n$ matrices, then there exists a nonsingular matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are diagonal matrices.
- (c) If A is a singular $n \times n$ real matrix, then there exists a nonzero $n \times n$ matrix B satisfying BA = 0.
- (d) 13 is irreducible in the ring $\mathbb{Z}[\sqrt{3}] = \{m + n\sqrt{3} : m, n \in \mathbb{Z}\}$ (regarded as a subring of the field \mathbb{R} of real numbers).
- (e) The quotient field of $D = \{2^k b : k, b \text{ are integers}; b \text{ is 0 or odd}\}$ (regarded as a subring of \mathbb{Q}) is \mathbb{Q} .