國 立 清 華 大 學 命 題 紙

 九十二學年度
 數學
 系(所)
 純粹數學
 組碩士班研究生招生考試

 科目
 高等微積分
 科號 0101
 共/ 頁第/ 頁 *請在試卷【答案卷】內作答

- * Show your work, otherwise no credit will be granted.
- **Each problem is worth 15 points.
- 1. Let f and g be two continuous real-valued functions on [0,1] such that $\sup_{0 \le x \le 1} f(x) = \sup_{0 \le x \le 1} g(x)$. Show that there is a $t \in [0,1]$ such that f(t) = g(t).
 - 2. For any subsets A, B of \mathbb{R}^2 , define $A + B = \{c \mid c = a + b, a \in A, b \in B\}$.
 - (1) If A is closed and B is compact, show that A + B is closed.
 - (2) As in (1), but B is assumed to be closed only, is A + B closed? Prove it or give a counterexample.
- 3. Let $f_n(x) = \cos(nx)$ on $[0, \pi]$, does the sequence $\{f_n\}_{n=1}^{\infty}$ contains a uniformly convergent subsequence? Prove or disprove it.
- 4. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of nonnegative continuous functions on [0,1] such that $f_n(x) \geq f_{n+1}(x)$, $n = 1, 2, \cdots$, for all $x \in [0,1]$. Let $f(x) = \lim_{n \to \infty} f_n(x)$ and $M = \sup_{0 \leq x \leq 1} f(x)$, show that there is a $t \in [0,1]$ such that f(t) = M.
 - 5. Let $f: \mathbb{R} \to \mathbb{R}$ be a function.
 - (1) If f is continuous in the ϵ - δ sense, show that $f^{-1}(C)$ is closed for any closed subset C of \mathbb{R} .
 - (2) If $f^{-1}(K)$ is compact for any compact subset K of \mathbb{R} , is f continuous on \mathbb{R} ? Prove it or give a counterexample.
 - 6. Define

$$f(x,y) = \begin{cases} (x-y)^2 \sin\frac{1}{x-y}, & \text{if } x \neq y, \\ 0, & \text{if } x = y. \end{cases}$$

Is f differentiable at (0,0)? Prove or disprove it.

7. Evaluate the surface integral over the sphere $S = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}$:

$$\iint_{S} (x^4 + y^4) d\sigma,$$

where $d\sigma$ is the surface element.

8. Let f be a C^2 real-valued function on $(0,\infty)$, and let $M_0 = \sup|f(x)|$, $M_1 = \sup|f'(x)|$, $M_2 = \sup|f''(x)|$ on $(0,\infty)$. Show that $M_1^2 \le 4M_0M_2$.