國立清華大學命題紙

九十一學年度<u>數學</u>系(所)<u>純粹數學組</u>碩士班研究生招生考試 科目<u>代數及線性代數科號 0102</u>共<u>2</u>頁第<u>1</u>頁 <u>*請在試卷【答案卷】內作答</u>

Algebra and Linear Algebra (總分 120 分)

(12%) 1.

Determine "true" or "false" for the following statements (without proofs).

- (a) det: M_n(R) → R is linear over R, where M_n(R) is the vector space of all the n × n matrices over R.
- (b) If A, B ∈ M_n(R) are similar then they have the same eigenvectors.
- (c) For $A, B \in M_n(\mathbb{R})$ if $AB = I_n$ (identity matrix) then $BA = I_n$.
- (d) rank(AB) ≥ rankB for any A, B ∈ M_n(R).

(16%) 2.

Let V be an n-dimensional vector space over R and $V \xrightarrow{T} V$ be a linear transformation such that the range and null space of T are identical.

- (a) Prove that n must be even. (8%)
- (b) Give an example of such a linear transformation for $V = \mathbb{R}^2$. (8%)

(15%) 3.

Show that any $A \in M_n(\mathbb{R})$ which is upper triangular and orthogonal (means $AA^T = I_n$) is a diagonal matrix.

(17%) 4.

- (a) For $A \in M_n(\mathbb{R})$, if Av = 0 for some $v \neq 0$ in \mathbb{R}^n prove that det A = 0.

 (7%)
- (b) Let f(x) be the characteristic polynomial of a matrix B ∈ M_n(R). If 1 is an eigenvalue of B, prove that det f(B²) = 0. (10%)

(15%) 5.

Prove that any group of order 78 has a normal subgroup of order 39.

九十一學年度 數 學 系 (所) 純 粹 數 學 組 碩士班研究生招生考試 代數及線性代數 科號 0102 共 2 頁 第 2 頁 *請在試卷【答案卷】內作答

(12%) 6.

Determine whether the two abelian groups in each of the following pairs are isomorphic to each other and explain why?

- (a) (Q/Z, +) and (Q, +).
- (b) (\mathbb{R}^+,\cdot) and (\mathbb{R}^+,\cdot) where $\mathbb{R}^* = \mathbb{R} \{0\}$, $\mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$.
- (c) $\mathbf{Z}_6 \times \mathbf{Z}_{15} / < (2,3) > \text{ and } \mathbf{Z}_6$.

(18%) 7.

Consider the Gaussian ring $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\} \subset \mathbb{C}$. Let < 2 + 3i > be the principal ideal of $\mathbb{Z}[i]$ generated by 2 + 3i. Note that N(2 + 3i) = (2 + 3i)(2 - 3i) = 4 + 9 = 13.

- (a) Prove that the inclusion map Z → Z[i], a → a = a + 0i,
 which is a ring homomorphism, induces a ring homomorphism
 Z/13 Z → Z[i]/ < 2 + 3i >. (5%)
- (b) Prove that \bar{j} is 1-1. (6%)
- (c) Prove that \hat{j} is onto. (7%)

(15%) 8.

Let p be an odd prime. The polynomial $\Phi_p(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$ is well known to be irreducible over \mathbb{Q} and $\zeta = \cos \frac{2\pi}{p} + i \sin \frac{2\pi}{p}, \, \zeta^2, \cdots, \zeta^{p-1}$ are zeros of $\Phi_p(x)$ in \mathbb{C} . Consider the extension field $\mathbb{Q}(\zeta) \subset \mathbb{C}$.

- (a) Show that the Galois group $G(\mathbb{Q}(\zeta)/\mathbb{Q})$ is an abelian group of order p-1. (7%)
- (b) Show that $|G(\mathbb{Q}(\zeta + \frac{1}{\zeta})/\mathbb{Q})| = \frac{p-1}{2}$. (8%)