八十八學年度 數學系 系 (所) 應用數學 組碩士班研究生招生考試 科目 高等 微 積 分 科號 D2 of 共 Z 頁第 「頁 *請在試卷【答案卷】內作答

- 1. (10 points) Suppose $f: \mathbf{R} \to \mathbf{R}$ is continuous and f(x) is rational for all x. Prove that f is a constant function.
- 2. (10 points) Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable such that $f'(x) \neq 0$ for all x. Prove that f is one-to-one.
- 3. (10 points) Let $f:[a,b] \to \mathbb{R}$ be continuous. Suppose f(a)=0, f(b)=1, and $\int_a^b f(x)dx=0$. If f is differentiable in (a,b), prove that there is a point $c\in(a,b)$ such that f'(c)=0.
- 4. (10 points) Consider the line integral

$$I_R = \oint_{x^2+y^2=R^2} \frac{xdy-ydx}{(x^2+xy+y^2)^2}.$$

Find the limit $\lim_{R\to\infty}I_R$.

- 5. (16 points) Find the extrema of $x^2(1-x)+y^2(1-y)+z^2(1-z)$ subject to the constraints: $x+y+z=1, x\geq 0, y\geq 0$ and $z\geq 0$.
- 6. (16 points) Let $f_n:[0,1]\to \mathbb{R}$ be defined by

$$f_n(x) = nx(1-x^2)^n, \qquad n = 1, 2, 3, \cdots$$

- (a) Compute $\lim_{n\to\infty} \int_0^1 f_n(x) dx$ and $\int_0^1 [\lim_{n\to\infty} f_n(x)] dx$.
- (b) Does $\{f_n\}$ converge uniformly on [0,1]?
- 7. (16 points) For what values of λ , does the integral

$$\iiint\limits_{\mathbf{R}^{3}} \frac{dV}{(x^{2}+y^{2}+z^{2})^{\lambda}(1+x^{2}+y^{2}+z^{2})}$$

converge? Show your works.

國立清華大學命題紙

- 8. (16 points) Let $\overline{B}(0,r) = \{x \in \mathbb{R}^n : ||x|| \le r\}$. Suppose $f : \overline{B}(0,r) \to \mathbb{R}^n$ is a map with $||f(0)|| \le \frac{1}{3}r$ and $||f(x) f(y)|| \le \frac{2}{3}||x y||$ for all $x, y \in \overline{B}(0,r)$. Prove that there is a unique point $p \in \overline{B}(0,r)$ such that f(p) = p.
- 9. (16 points) Show that the equation

$$x\sin y = y + \sin x$$

has a solution of the form y = f(x) for (x, y) near (0, 0). Find the first three terms in the Taylor expansion of f(x) about x = 0.