八十七學定度 <u>數學系</u>系(所)純粹數學組碩士班研究生入學考試 科目代數及線性代數 科號 5/ 02 共 2 寅第 / 頁 1調在試卷【答案卷】內作答

- 1. (10 points) If A is an $n \times n$ matrix such that $A^2 = A$, show that tr(A) = rank(A).
- 2. (20 points) On \mathbb{R}^4 , let V be the subspace defined by $x_1 = x_4$, $x_2 = x_5$. Denote by $A: \mathbb{R}^4 \to \mathbb{R}^4$ to be the reflection with respect to the subspace V.
 - (a) Find the matrix (with respect to the standard basis in \mathbb{R}^4) representing A.
 - (b) Find the minimal polynomial of A.
- 3. (20 points) Let $T: V \to V$ be a linear operator. Suppose that v_1 is an eigenvector corresponding to the eigenvalue λ_1 and v_2 is an eigenvector corresponding to the eigenvalue λ_2 , where $\lambda_1 \neq \lambda_2$. Put $v = v_1 + v_2$.
 - (a) Let W be the T-cyclic subspace generated by v,(i.e. $W = \text{span}(\{v, T(v), T^2(v), \cdots\}))$. Find the dimension of W.
 - (b) Let Tw be the restriction of T to W. Find the characteristic polynomial of Tw.
- 4. (15 points) Let A and B be $m \times n$ matrics. Suppose that $rank(A) = r_1 \ge rank(B) = r_2$.
 - (a) Prove that $r_1 \leq \operatorname{rank}[A|B] = \operatorname{rank}[B|A] \leq r_1 + r_2$ and prove that $\operatorname{rank}[A+B|B] = \operatorname{rank}[A|B]$. Where [A|B] means the $m \times 2n$ matrix, where A is the first shumatrix, and B is the second matrix, that is $[A|B] = (c_{ij}), \ c_{ij} = \begin{cases} a_{ij} & \text{if } 1 \leq j \leq n \\ b_{i,j-n} & \text{if } n+1 \leq j \leq 2n. \end{cases}$
 - (b) Using the results in (a), prove that $r_1 r_2 \le \operatorname{rank}(A + B) \le r_1 + r_2$.
- 5. (20 points) Let G be a group with identity e and let N_1 and N_2 be normal subgroups of G. Denote $\phi_i: G \to G/N_i$ the canonical epimorphism $\phi_i(a) = aN_i$. Denote $\phi: G \to G/N_1 \times G/N_2$ the unique homomorphism such that $\pi_i \phi = \phi_i$ (π_i is the canonical projection of the direct product).
 - (a) Prove that ϕ is an isomorphism if and only if $G = N_1 \times N_2$ as internal direct product (i.e. $G = N_1 N_2$ and $N_1 \cap N_2 = \langle e \rangle$).
 - (b) Is it true that ϕ is an isomorphism if and only if $G \cong N_1 \times N_2$?

八十七學年度<u>數學系</u>系(所)純粹數學組碩士班研究生入學者試 科目代數及線性代數 科號 0/02 共 2 頁第 2 頁 1謂在試卷【答案卷】內作答

- 6. (15 points) Let F_2 be a finite field of 2 elements and let $f(x) = x^4 + x + 1 \in F_2[x]$. Let $\overline{F_2}$ be an algebraic closure of F_2 .
 - (a) Prove that f(x) is an irreducible polynomial over F_2 .
 - (b) Suppose that $\alpha \in \overline{F_2}$ is a root of f(x). Prove that $F_2(\alpha)$ is the splitting field over F_2 of f(x), by expressing all other roots of f(x) as elements in $F_2(\alpha)$.
- 7. (20 points) Let k be a field and f(x) be a polynomial of degree n in k[x]. Let R be the residue class ring k[x]/(f(x)). In the following, for any $g(x) \in k[x]$, we denote $g(x) \in R$ the residue class of g(x) modulo (f(x)).
 - (a) For any ideal $I \subset R$, prove that there exists $g(x) \in k[x]$ such that $(\overline{g(x)}) = I$ and g(x)|f(x) in k[x].
 - (b) Using the result in (a), prove that the total number of distinct ideals of R is not greater than 2ⁿ-1. Furthermore, prove that f(x) is irreducible in k[x] if and only if there is no non-zero ideal in R.
 - (c) Let I be an ideal of R. Suppose that I = (g(x)) and g(x)|f(x) in kix]. Suppose further that the degree of g(x) is m. Consider I as a vector space over k. Prove that the dimension of I over k is n m and find a basis for I.
 - (d) Let I be an ideal of R. Suppose that $I = (\overline{g(x)})$ and g(x)h(x) = f(x) for some $h(x) \in k[x]$. Prove that $\overline{\lambda(x)} \in I$ if and only if $f(x)|\lambda(x)h(x)$ in k[x].