八十七學年度 <u>數學系</u> 系 (所) **純 粹 數 學**組碩士班研究生入學者試高 等 **豫 積** 分 科號 o/o/ 共 2 頁第 / 頁 "請在試卷【答案卷】內作答

I(15 pts). (a) Evaluate the double integral

$$\int_0^1 \int_y^1 e^{x^2} \, dx dy.$$

(b) Define

科自

$$g(x) = \left\{ \begin{array}{ll} -1 & \text{if } x \leq 0 \\ 3x - 1 & \text{if } 0 < x < 1 \\ 2 & \text{if } x \geq 1 \end{array} \right. \quad \text{and} \quad \alpha(x) = \left\{ \begin{array}{ll} 0 & \text{if } x \leq 0 \\ 1 & \text{if } 0 < x < 1 \\ 0 & \text{if } x \geq 1 \end{array} \right..$$

Evaluate the Riemann-Stieltjes integral

$$\int_{-2}^{2} g(x) \, d\alpha(x).$$

2(10pts). Evaluate the surface integral

$$\int \int_{\sum} (x^4 + y^4 + z^4) \, d\sigma$$

where \sum is the unit sphere in ${f R}^3$ and $d\sigma$ is the surface element on \sum .

 $3(20 \mathrm{pts})$. Let $f: \mathbf{R}^2 \to \mathbf{R}$ be defined by

$$f(x,y) = \begin{cases} \sqrt{x^2 + y^2} \sin\left(\frac{y^2}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}.$$

(a) Show that f is continuous at the point (0,0).

(b) Show that f has directional derivatives in every direction at (0,0).

(c) Is f differentiable at (0,0)? Explain.

4(15 pts). (a) Show that the series $\sum_{k=1}^{\infty} \frac{\cos^2 kx}{k\sqrt{k}}$ converges uniformly on R.

(b) Does there exist a polynomial p(x) such that

$$\left| p(x) - \sum_{k=1}^{\infty} \frac{\cos^2 kx}{k\sqrt{k}} \right| < 10^{-4} \quad \text{for all } x \in (-1,1) ?$$

Show your reason.

園立清華大學命題紙

八十七學年度<u>數學系</u>系(所)純粹數學組碩士班研究生入學考試 科目高等微積分 科號 o/o/共2頁第2頁"積在試卷【答案卷】內作答

5(10 pts). Let $f: \mathbf{R} \to \mathbf{R}$ be a bounded function. Does there exist a sequence of positive integers $n_1 < n_2 < n_3 < \cdots \to \infty$ such that $\lim_{k \to \infty} f(n_k)$ exists? Show your reason.

6(15 pts). Let $S = \{(x,y): x^2 + y^2 = 1\}$ be the unit circle in \mathbb{R}^2 , and let $f: S \to \mathbb{R}$ be a continuous function. Prove that there are two antipodal points (x_0, y_0) and $(\neg x_0, \neg y_0)$ in S such that $f(x_0, y_0) = f(\neg x_0, \neg y_0)$.

7(20 pts). (a) Let $h: \mathbf{R} \to \mathbf{R}$ be a differentiable function, and suppose that there is a constant c > 0 such that $h'(t) \geq c$ for all $t \in \mathbf{R}$. Prove that there is exactly one point t at which h(t) = 0.

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function, and suppose that there is a constant c > 0 such that

$$\frac{\partial f}{\partial y}(x,y) \gtrsim c$$
 for all $(x,y) \in \mathbf{R}^2$.

Prove that there is a C^1 function $g: \mathbf{R} \hookrightarrow \mathbf{R}$ with f(x, g(x)) = 0 for all $x \in \mathbf{R}$.

8(15 pts). Let f(x,y) be a continuous real-valued function defined on the closed unit disc $\overline{\Delta}$, where $\Delta=\{(x,y):x^2+y^2<1\}$. Suppose that f satisfies the submean value property on Δ , i.e., for any $p=(x_0,y_0)\in\Delta$ and any $0< r<1-\sqrt{x_0^2+y_0^2}$, we have

$$f(p) \leq rac{1}{2\pi} \int_0^{2\pi} f(p + re^{i heta}) \, d heta.$$

Prove that if f is not a constant function, then f must achieves its maximum on the boundary of Δ .