國立清華大學命題紙

- (10 points)
 Prove that every compact subset of a topological Hausdorff space is closed.
- (15 points)
 Show that the one point compactification of the real line R (in the usual topology) is homeomorphic with the circle S¹, where S¹ = {(a, b)/a² + b² = 1} ⊆ R² (in the usual topology).
- 3. (15 points)
 Let A be a connected subset of a topological space Y. Then show that if $B \subseteq Y$ and $A \subseteq B \subseteq \overline{A}$, then B is also connected, where \overline{A} is the closure of A.
- (26 points)
 Let f be a continuous mapping of a compact metric space X into a metric space Y. Show that f is uniformly continuous on X.