國 立 清 華 大 學 命 題 紙

- 1. (15 points) Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous and periodic with period of 2π . For $n \in \mathbb{N}$, let $f_n(x) = f\left(x + \frac{1}{n}\right)$ for $x \in \mathbb{R}$. Show that $\{f_n\}$ converges uniformly on \mathbb{R} to f.
- 2. (15 points) Find the volume of the largest rectangular box that can be inscribed in the ellipsoidal region

$$\left\{(x,y,z)\in {\rm I\!R}^3\Big|\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\leq 1\right\}$$

where $a>0,\ b>0,\ c>0.$

3. (15 points) Find all function $\sigma(x)$ continuous for x>0, and positive real numbers β for which

$$e^x = 2 - \int_{\beta}^{x^2} \sigma(t) dt.$$

4. Suppose that f(x) is a real, continuously differentiable function on [a,b] with f(a) = f(b) = 0 and

$$\int_a^b f^2(x)dx = 10$$

Show that

- (a) $\int_a^b x f(x) f'(x) dx = -5$ (7 points)
- (b) $\int_a^b (f'(x))^2 dx \cdot \int_a^b x^2 f^2(x) dx \ge 25$. (8 points)
- 5. (15 points) Show that $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ is an irrational number.

國 立 清 華 大 學 命 題 紙

八十五學年度 <u>数 等</u> 系 (所) <u>應用數等</u> 組碩士班研究生入學考試 科目 <u>高 字 (数 積 分</u> 科號 020/ 共 2 頁第 2 頁 *讀在試卷【答案卷】內作祭

- 6. Suppose that f(x) is a differentiable function defined on \mathbf{R} . A point p is called a fixed point of f if f(p) = p. Show that
 - (a) If $f'(x) \neq 1$ for all $x \in \mathbb{R}$, then f(x) has at most one fixed point. (7 points)
 - (b) If $|f'(x)| \le c < 1$ for all $x \in \mathbb{R}$ and some constant c, then f(x) has exactly one fixed point. (8 points)
- 7. (15 points) Suppose that the coefficients of the power series $\sum_{n=0}^{\infty} a_n x^n$ are related by the equation

$$a_n + Aa_{n-1} + Ba_{n-2} = 0 \quad (n = 2, 3, \cdots).$$

Show that for any x for which the series converges, its sum is

$$\frac{a_0 + (a_1 + \underline{Aa_0})x}{1 + \underline{Ax + Bx^2}},$$

provided 1 | $Ax + Bx^2 \neq 0$.

8. (15 points) Let $S^2=\{(x,y,z)\in {\bf R}^3|x^2+y^2+z^2=1\}$. Evaluate the integral $\int_{S^2}(x^4+y^4+z^4)d\sigma,$

where $d\sigma$ is the surface area element in S^2 .