國 工 清 華 大 學 命 題 紙

八十五學年度 <u>數 學</u> 系 (所) **純數** 組碩士班研究生入學老試 科目 **拓模學** 科號 0104 共 1 賣第 1 頁 *請在試卷【答案卷】內作答

1. (20%)

Prove that the following statements are equivalent to each other.

- (a) X is Hausdorff topological space.
- (b) Let $p \in X$. For each $q \neq p$, there is a neighborhood U(p) of p such that $q \notin U(p)$, where $\overline{U(p)}$ is the closure of U(p).
- (c) For each $p \in X$, $\cap \{\overline{U}|U \text{ is a neighborhood of } p\} = p$, where U is the closure of U.
- (d) The diagonal $\Delta = \{(p,p)|p \in X\}$ is closed in $X \times X$ with product topology.

2. (10%)

Let X be a locally compact Hausdorff space that is not compact. Prove that X is dense in the one-point compactification $Y = X \cup \{\infty\}$ of X.

3. (10%)

Let X be a T_4 -space. Let E be a closed subset of X, and $f: E \to \mathbb{R}$ be continuous. Show that f can be extended to a continuous function from X to \mathbb{R} . (Hint: Let $g: \mathbb{R} \to (-1,1)$ be a homeomorphism, extend $g \circ f$ to a map from X to [-1,1], and decide what to do on the set where the extension assumes the value ± 1 .)

4. (10%)

Define an equivalent relation in $X = [0,1] \times [0,1]$ by declaring $(s_0,t_0) \sim (s_1,t_1)$ if and only if $t_0 = t_1 > 0$.

- (a) Describe the quotient space X/\sim .
- (b) Prove or disprove that X/ ~ is Hausdorff.

5. (10%)

Prove or disprove that a continuous map from a connected topological space to a discrete topological space must be a constant map.