八十五學年度 <u>數學</u>系(所)<u>純數</u>組碩士班研究生入學考試 科目 代數及線性代數 科號 0102 共 2 頁第 1 頁 *請在試卷【答案卷】內作答

1. (12 points)

Let $A \in \mathbf{M}_{m \times n}(\mathbf{R})$. Show that if rank A = m, then there exists $B \in \mathbf{M}_{n \times m}(\mathbf{R})$ such that $AB = \mathbf{I}_m$

2. (12 points)

Let A, B be $n \times n$ matrices over an infinite field F.

- (a) Show that there exists $c \in \mathbf{F}$ such that $A + c\mathbf{I}_n$ is invertible.
- (b) Show that if B is invertible then there exists $c \in F$ such that A + cB is invertible.
- 3. (20 points)
 - (a) Let W be a subspace of \mathbf{R}^n (with the standard inner product). Define $W^{\perp} = \{x \in \mathbf{R}^n \mid \langle x, y \rangle = 0 \text{ for all } y \in W\}$. Prove that if $z \in \mathbf{R}^n$, then there exists a unique $y_0 \in W$ such that $z y_0 \in W^{\perp}$ and $||z y_0|| \leq ||z y||$ for all $y \in W$.
 - (b) Let $A \in \mathbf{M}_{m \times n}(\mathbf{R})$, $b \in \mathbf{R}^m$ and let $S = \{x \in \mathbf{R}^n \mid Ax = b\}$. If $S \neq \phi$, prove that there exists a unique $x_0 \in S$ such that $||x_0|| \le ||x||$ for all $x \in S$.
- 4. (16 points)

Let A be a (real) positive definite matrix such that $A^2 = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$.

- (a) Compute tr(A) and det(A).
- (b) Find A.
- 5. (20 points)
 - (a) Compute A^n , where $A = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.
 - (b) Let α and β be real numbers and let $< a_n >$ be a sequence such that

$$a_1 = \alpha, a_2 = \beta, a_n = \frac{1}{2}(a_{n-1} + a_{n+2}), n \ge 3.$$

Compute a_n in terms of α , β and n.

6. (12 points)

Give an example of a nontrivial homomorphism φ of $\mathbb{Z}_2 \times \mathbb{Z}_2$ into S_3 and justify your answer.

國立清華大學命題紙

八十五學年度 <u>數學</u> 系(所) 純數 組碩士班研究生入學考試 科目 代數及線性代數 科號 0102 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

7. (12 points)

Suppose G is an abelian group of order 24 and G has exactly three elements of order 2. Determine the isomorphism class of G.

8. (16 points)

Let $F = \{0, 1, a, b\}$ be a field with 4 elements. Write down tables of addition and multiplication of the field F and justify your answers.