八十四學年度 <u>《集中教 基所</u>組碩士班研究生入學考試 科目 <u>教 植 今 科 科號 0 20 中 共 2 頁第 / 頁 *請在試卷【答案卷】內作簽</u>

- (a) Suppose that we want to use computer to compute the value of \(\sqrt{1+2x} - \sqrt{1+x}\) for x near 0. Get one computing method to avoid loss of significance. (8 points)
 - (b) Let $p(x) = x^3 + ax^2 + bx + c$ for some constants a, b, c. Suppose we know that there exists a x_0 with large magnitude such that $p(x_0)$ has very small magnitude. Explain why we can not compute $p(x_0)$ with high accuracy by computer in general. (8 points)
- 2. Consider fixed-point iteration $x_{n+1} = g(x_n)$ for some given point x_0 . Here g is a smooth function on the whole real line. Suppose that there exists a ξ such that $\xi = g(\xi)$ and $g'(\xi) = g''(\xi) = \cdots = g^{(n)}(\xi) = 0$ for some positive integer $n \ge 1$.
 - (a) Prove that there is a number $\varepsilon > 0$ such that if $|x_0 \xi| \le \varepsilon$, then $x_n \to \xi$ as $n \to \infty$. (8 points)
 - (b) Let x₀ be a point which satisfies the condition of part (a). We assume that x_n ≠ ξ for all n. Find a constant C and a positive integer p such that

$$\lim_{n\to\infty} \frac{|x_{n+1}-\xi|}{|x_n-\xi|^p} = C. \tag{8 points}$$

- 3. (a) Suppose we want to use the integration quadrature rule Q(f) = Aof (1/4) + A₁f (1/2) + A₂f (3/4) to approximate the integral I(f) = f₀¹ f(x)dx. Here A₀, A₁, A₂ are constants independent of f. Find the constants A₀, A₁, A₂ such that Q(f) = I(f) for all polynomials f of degree less than or equal to 2. (8 points)
 - (b) Given two real numbers a and b with a < b and x_i = a + i ⋅ b-a for i = 0, 1, · · · , N. Here N is a positive integer. Set h = (b-a)/N. Let f be a smooth function on [a, b]. Denote the composite midpoint integration rule by M_N = h ∑_{i=1}^N f (x_{i-i+x_i}/2). Then there exist constants C₁, C₂, · · · , independent of h such that I(f) = ∫_a^b f(x)dx = M_N(f) + C₁h² + C₂h⁴ + O(h⁶). Find the constant C₁. (10 points)

國 立 清 華 大 學 命 題 紙

八十四學年度<u>/後月 数 紫</u>所<u>組碩士班研究生入學者試</u> 科目<u>数 値 ま が 科號 0 ング 共 ン 賈第 3 賈 *請在試卷【答案卷】內作答</u>

- 4. (a) Let A be an $n \times n$ symmetric and positive deifnite matrix. Use mathematical induction to prove that there exists an $n \times n$ lower triangular matrix L such that $A = LL^T$. (10 points)
 - (b) Let A be a general $n \times n$ matrix. Suppose we can find an $n \times n$ lower triangular matrix L with $L_{ii} = 1$, $\forall i$, and $|L_{ij}| \leq 1$, $\forall i, j$ and an $n \times n$ upper triangular matrix U such that A = LU. Use mathematical induction to prove that $\max_{i,j} |U_{ij}| \leq 2^{n-1} \cdot \max_{i,j} |A_{ij}|$. (10 points)