國 立 清 華 大 學 命 題 紙

八十四學年度 数 學 所 組碩士班研究生入學考試

科目 拓 様 學 科號 0104 共 1 賈第 1 賈 *請在試卷【答案卷】內作答

- 1.(12 points) Show that $\beta = \{(-\infty, a); a \in R\}$ is a basis for a topology \Im on the real line R. Prove or disprove that whether [0, 1] in the topology (induced from) \Im is compact? connected? Hausdorff? T_1 ? (You may use without proof that [0, 1] is compact and connected in the usual topology.)
- 2.(16 points) Let A be a subset of $X = \mathbb{R}^n$ carrying the usual metric d. For $x \in \mathbb{R}^n$, define $f(x) = d(x, A) = \inf\{d(x, y); y \in A\}$.
- (a) Show that f is uniformly continuous.
- (b) Show that f(x) = 0 if and only if $x \in \overline{A}$.
- (c) Let A,B be disjoint closed subsets of X,B compact, show that we can find a small $\epsilon > 0$, such that $U_{\epsilon}(A) = \{x \in X; d(x,A) < \epsilon\}$ and $U_{\epsilon}(B)$ are disjoint.
- (d) Is the conclusion in (c) still true if B is not compact? Give a proof or a counterexample.
- 3.(20 points) Regard $G=\{\left[\begin{array}{cc}a&b\\c&d\end{array}\right];a,b,c,d\in R,ad-bc\neq 0\}$ as a subspace of R^4 in the usual topology.
- (a) Show that the map $f: G \times G \to G$ given by $f(g,h) = gh^{-1}$ (product of matrices) is continuous.
- (b) For a open subset A, and any subset B of G, show that $AB = \{gh; g \in A, h \in B\}$ is also open in G.
- (c) For a compact subset C, and a closed subset D, show that CD is closed.
- (d) Is G connected? Why?
- (e) Let G_o be the connected component of G containing $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Show that $gh^{-1} \in G_o$ whenever $g, h \in G_o$ and $xyx^{-1} \in G_o$ for any $x \in G$ and $y \in G_o$.
- 4.(12 points) (a) Show that any continuous one to one map $f:[a,b] \to R$ is strictly monotone.
- (b) Show that any continuous bijective map $f: R \to R$ is a homeomorphism (in usual topology).