國 立 清 華 大 學 命 題 紙

科目 代數及線性代數 科號 0102 共 2 頁第 1 頁 *請在試卷【答案卷】內作答

1. (32%)

True or False: Justify your answers.

- (a) If G is a group with order |G| = 2k, then there is an element $a \neq 1$ such that $a^2 = 1$.
- (b) The matrix $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$ is diagonalizable over \mathbb{R} .
- (c) Let A, B be two $n \times n$ matrices over $\mathbb R$. If rank $(AB) = \operatorname{rank}(B)$, then rank $(A) \ge \operatorname{rank}(B)$.
- (d) Given two sets of vectors $S_1 = \{x_1, x_2, x_3\}$ and $S_2 = \{y_1, y_2, y_3\}$ in $\mathbb{R}^{|n|}$ $(n \geq 3)$. Let $V = \operatorname{span} S_1$, $W = \operatorname{span} S_2$. Suppose $\dim_{\mathbb{R}} V = 2 = \dim_{\mathbb{R}} W$. Then there exists a linear map $T: V \to W$, such that $T(x_i) = y_i$, $1 \leq i \leq 3$.

2. (10%)

How many group homomorphisms from the cyclic group Z $_6$ to the cyclic group Z $_8$? Prove your answer.

3. (20%)

Define a map $T: M_{n\times n}(\mathbb{R}^n) \to M_{n\times n}(\mathbb{R}^n)$ by $T(A) = A^t$, the transpose of A.

(5%) (a) Show that T is a linear map.

(8%) (b) Determine the eigenvalues of T.

(7%) (c) Determine the dimension of each eigenspace,

4. (15%)

Let T be an orthogonal transformation of \mathbb{R}^3 , i.e. T is a linear transformation which preserves the inner products in the sense that

$$T(p) \cdot T(q) = p \cdot q,$$

for all $p, q \in \mathbb{R}^{|3|}$.

Show that

- (a) $\{T(p) T(q)\} = \|p q\|$, where $\|\cdot\|$ is the usual norm on \mathbb{R}^{3} .
- (b) Conversely, if F is any transformation from \mathbb{R}^3 to \mathbb{R}^3 which preserves the distance and F(0)=0, then F is an orthogonal transformation.

國 立 清 華 大 學 命 題 紙

八十四學年度 <u>數學</u>所 組碩士班研究生入學考試 科目 代數及線性代數 科號 0102 共 2 頁第 2 頁 *議在試卷【答案卷】內作答

5. (15%)

Prove that, in a commutative ring with identity, every prime ideal of finite index is a maximal ideal.

6. (10%)

Show that the Galois group $\Gamma(\mathbb{R}/\mathbb{Q}) = \{id\}$. (Hint: If a < b in \mathbb{R} , $\varphi \in \Gamma$, then $\varphi(a) < \varphi(b)$).

7. (18%)

Let E be the splitting field over \mathbf{Q} of x^7-1 . How many proper subfields of E between E and \mathbf{Q} ? Prove your answer.