國立清華大學 107 學年度碩士班考試入學試題

系所班組別:數學系碩士班

考試科目(代碼):高等微積分(0101)

共_2_頁,第_1_頁 *請在【答案卷、卡】作答

1. Let

$$F(x) = \int_1^{x^2} \frac{\sin t}{2 + e^t} dt$$

(a) (10%) Determine all local maximum and local minimum of F.

(b) (10%) Show that $|F(x)| \leq |x-1|$ for all $x \in \mathbb{R}$.

2. Let [x] denote the greatest integer less than or equal to x.

- (a) (5%) Is the function [] Riemann integrable on the interval [1, 10]? Why?
- (b) (10%) Evaluate the double integral

$$\iint_R [x+y] dA$$

where

$$R = \{(x, y) | 0 \le x \le 2, 4 \le y \le 6\}$$

- 3. Let $A, B \subset \mathbb{R}^3$ be two nonempty subsets.
 - (a) (10%) Show that if A and B are compact and for any $n \in \mathbb{N}$, there exist $a_n \in A, b_n \in B$ such that $|a_n b_n| < \frac{1}{n}$ where $|\cdot|$ is the Euclidean norm of \mathbb{R}^3 . Show that A and B are not disjoint.
 - (b) (5%) If A and B are not compact, is the above result true? Prove or give a counterexample.
- 4. (10%) Let $E: \mathbb{R}^3 \{(0,0,0)\} \rightarrow \mathbb{R}^3$ be defined by

$$E(\mathbb{X}) = \frac{1}{|\mathbb{X}|^3} \mathbb{X}$$

where $\mathbb{X} = (x, y, z), |\mathbb{X}| = \sqrt{x^2 + y^2 + z^2}$. Suppose that S is a closed smooth surface that encloses the origin, show that the surface integral of E over S is

$$\iint_{S} E \cdot dS = 4\pi$$

國立清華大學 107 學年度碩士班考試入學試題

系所班組別:數學系碩士班

考試科目(代碼):高等微積分(0101)

共_2_頁,第_2_頁 *請在【答案卷、卡】作答

- 5. (20%)Let $\mathscr{C}(\mathbb{R}^2) := \{ f : \mathbb{R}^2 \to \mathbb{R} | f \text{ is continuous } \}$. Suppose that $f : \mathbb{R}^2 \to \mathbb{R}$ is a function.
 - (a) Let

$$C_r := \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = r^2 \}$$

Suppose that the sequence $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f on C_r , for each $r \geq 0$. Does it imply that $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f on \mathbb{R}^2 ?

- (b) If $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f on each compact subset of \mathbb{R}^2 , does it imply that $f \in \mathscr{C}(\mathbb{R}^2)$? Prove or give a counterexample.
- 6. (10%) Let $f : [2,7] \to \mathbb{R}$ be a continuous function. Given $\varepsilon > 0$. Show that there is a polynomial p such that

$$p(2) = f(2), \quad p'(2) = 0, \quad \text{and } \sup\{|p(x) - f(x)| | x \in [2,7]\} < \epsilon$$

7. (10%) Let (X, d) be a *compact* metric space and $f : X \to X$ be a function which satisfies the following condition

$$d(f(x), f(y)) < d(x, y)$$

for all $x, y \in X$. Show that f has a unique fixed point.