## 國立清華大學 106 學年度碩士班考試入學試題

系所班組別:數學系碩士班 應用數學組

考試科目(代碼):線性代數(0202)

- 1. (10%) Let W be a subspace of a vector space V. Show that if  $\beta$  is a basis for W, and  $v \in V \setminus \beta$ , then  $\beta \cup \{v\}$  is linearly independent if and only if  $v \notin W$ .
- 2. (12%) Let V and W be finite-dimensional vector spaces, and let  $T: V \to W$  be a surjective linear transformation. Show that if U is a subspace of V, then

$$\dim T(U) \ge \dim U - \dim V + \dim W.$$

3. (12%) Let A be the coefficient matrix of a homogeneous system of m linear equations in n unknowns  $x_1, \ldots, x_n$ . Show that if we include one more equation

$$c_1x_1 + \dots + c_nx_n = 0$$

in the system, the dimension of the solution space will decrease by one if the vector  $(c_1, \ldots, c_n)$  cannot be spanned by the row vectors of A.

- 4. Let  $T: \mathbb{R}^3 \to \mathbb{R}^3$  be the rotation by 30° about the axis spanned by the vector (1,2,3). The rotation is counter-clockwise when the vector (1,2,3) points toward the observer. Let A be the matrix representation of T relative to the standard basis for  $\mathbb{R}^3$ , and let  $A^t$  denote the transpose of A.
  - (a) (10%) Find  $A^{12}$ .
  - (b) (10%) Find all integers n such that  $A^n = (A^t)^n$ .
  - (c) (12%) Find an invertible matrix Q and a diagonal matrix D such that  $Q^{-1}A^6Q=D$ .
- 5. (12%) Show that for any invertible linear operator  $T: \mathbb{R}^3 \to \mathbb{R}^3$ , there exists a line L in  $\mathbb{R}^3$  passing through the origin such that T(L) = L.
- 6. (12%) Let A, B and Q be square matrices with real entries. Show that if A is symmetric, B is skew-symmetric, and Q is invertible such that  $Q^{-1}AQ = B$ , then A = B = 0.
- 7. (10%) Let f be the piecewise continuous function on the interval [-1,1] such that f(x) = 0 for  $x \in [-1,0)$  and f(x) = 1 for  $x \in [0,1]$ . Find the polynomial function g of degree  $\leq 2$  which best approximates f, in the sense that the value of the integral  $\int_{-1}^{1} |f(x) g(x)|^2 dx$  is minimized.