國立清華大學 105 學年度碩士班考試入學試題

系所班組別:數學系 應用數學組

考試科目(代碼): 高等微積分 (0201)

共_1_頁,第_1_頁 *請在【答案卷】作答

- **1**. Suppose *A* is a connected set in \mathbb{R}^2 that contains (-1, 2) and (6, 5). Show that *A* contains at least one point on the line x = y.
- **2**. Let $f:[a,b] \to \mathbb{R}$ is an integrable function. If for every subinterval $I \subset [a,b]$ there is a point $c \in I$ such that f(c) = 4. Compute $\int_a^b f(x) dx$.
- 3. Find the extreme values of $f(x, y) = 2x^2 + y^2 + 2x$ on the set $\{(x, y) | x^2 + y^2 \le 1\}$.
- 4. Let $f_n(x) = g(x) x^{2n}$, where g is continous on [0, 1] and g(1) = 0. Show that $f_n \to 0$ uniformly on [0, 1].
- **5**. Suppose f is a function defined on an open set $S \subset \mathbb{R}^3$. Show that if the partial derivatives $\frac{\partial f}{\partial x_j}$ exist and are bounded on S, then f is continous on S.
- **6.** Let $f(x, y) = \frac{3x y^2}{x^2 + y^2}$ if $f(x, y) \neq (0, 0)$ and f(0, 0) = 0. Prove or disprove f is differentiable at (0, 0).
- 7. Let f_n be a sequence of functions that converges uniformly to f on $I \subset \mathbb{R}$ and that satisfies $|f_n(x)| \leq M$ for all $n \in \mathbb{N}$ and all $x \in I$. If g is continuous on \mathbb{R} , show that the sequence $g \circ f_n$ converges uniformly to $g \circ f$ on I.
- **8**. Let f_n , g_n , h_n be sequences of functions on $\mathbb R$ that satisfy $f_n \leq g_n \leq h_n$ on $\mathbb R$ for all $n \in \mathbb N$. If $\sum f_n$ and $\sum h_n$ converge, show that $\sum g_n$ converges.
- **9**. Let $f:[a,b] \to \mathbb{R}$ is a continuous function. If for each $x \in [a,b]$ there exists $y \in [a,b]$ such that $|f(y)| \le \frac{1}{3}|f(x)|$, show that there exists a point $c \in [a,b]$ such that f(c) = 0.

(第9題12分,其餘每題11分)