國立清華大學 104 學年度碩士班考試入學試題

系所班組別:數學系應用數學組 考試科目(代碼):線性代數(0202)

共 2 頁,第 1 頁 * 請在【答案卷、卡】作答

1. [10%] Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be given by

$$T(z_1, z_2) = (z_1 + \overline{z_2}, z_1 - \overline{z_2})$$

where \overline{z} denotes the complex conjugate of z. Is T a surjective mapping? Is T a (complex) linear transformation? Why or why not?

- 2. [10%] Let $T: \mathbb{R}^8 \to \mathbb{R}^8$ be a linear transformation. Suppose that $\dim(N(T)) = 4$ and $\dim(R(T) \cap N(T)) = 2$ where N(T) denotes the kernel of T and R(T) denotes the range of T. Find the ranks of T and $T \circ T$.
- 3. [10%] Let $\delta: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ be a function such that $\delta(AB) = \delta(A)\delta(B)$ for any $A, B \in M_{2\times 2}(\mathbb{R})$. Suppose also that $\delta(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) \neq \delta(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})$.
 - (1) Prove that $\delta(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}) = 0$.
 - (2) Prove that $\delta(B) = -\delta(A)$ if B is obtained by interchanging the rows of A.
- 4. [10%] Let V be a finite dimensional inner product space over \mathbb{R} , and let W be a subspace of V. Prove that $V = W \oplus W^{\perp}$ where W^{\perp} denotes the orthogonal complement of W.
- 5. [10%] Define

$$S = \{ A \in M_{2\times 3}(\mathbb{F}_p) \mid \operatorname{rank}(A) = 1 \}$$

where p is a prime number, \mathbb{F}_p is the finite field of p elements, and $M_{2\times 3}(\mathbb{F}_p)$ is the set of all 2×3 matrices over \mathbb{F}_p . Compute the number of elements in S.

6. [10%] Compute the determinant of the 7×7 matrix

國立清華大學 104 學年度碩士班考試入學試題

系所班組別:數學系 應用數學組

考試科目(代碼):線性代數(0202)

共
$$2$$
頁,第 2 頁 *請在【答案卷、卡】作答

7. [10%] Let T be a linear operator on the complex vector space $M_{3\times 3}(\mathbb{C})$ defined by T(X) = AX for any $X \in M_{3\times 3}(\mathbb{C})$ where

$$A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 4 & 4 \end{bmatrix}$$

- (1) Find the kernel of T.
- (2) Find the algebraic multiplicity of each eigenvalue of T.
- 8. [10%] Let

$$A = \begin{bmatrix} 3 & -2 & 5 \\ -1 & 2 & 1 \\ -1 & 1 & 0 \end{bmatrix}.$$

Find matrices T, N such that A = T + N, T is diagonalizable, N is nilpotent. and TN = NT.

- 9. [10%] Let T be a linear operator on a finite-dimensional inner product space V(with inner product denoted by \langle , \rangle). The adjoint of T is the linear operator T^* on V such that $\langle Tv, \mathbf{w} \rangle = \langle \mathbf{v}, T^*\mathbf{w} \rangle$ for all $\mathbf{v}, \mathbf{w} \in V$. If T is invertible, show that T^* is also invertible and $(T^*)^{-1} = (T^{-1})^*$.
- 10. [10%] Find the singular value decomposition of the 2×3 real matrix

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$