國立清華大學 104 學年度碩士班考試入學試題

系所班組別: 数學系 數學組

考試科目(代碼):代數與線性代數(0102)

1. [10%] Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ be given by

$$T(z_1, z_2) = (z_1 + \overline{z_2}, z_1 - \overline{z_2})$$

where \overline{z} denotes the complex conjugate of z. Is T a surjective mapping? Is T a (complex) linear transformation? Why or why not?

- 2. [10%] Let $T: \mathbb{R}^8 \to \mathbb{R}^8$ be a linear transformation. Suppose that $\dim(N(T)) = 4$ and $\dim(R(T) \cap N(T)) = 2$ where N(T) denotes the kernel of T and R(T) denotes the range of T. Find the ranks of T and $T \circ T$.
- 3. [10%] Let $\delta \colon M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ be a function such that $\delta(AB) = \delta(A)\delta(B)$ for any $A, B \in M_{2\times 2}(\mathbb{R})$. Suppose also that $\delta(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) \neq \delta(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})$.
 - (1) Prove that $\delta(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}) = 0$.
 - (2) Prove that $\delta(B) = -\delta(A)$ if B is obtained by interchanging the rows of A.
- 4. [10%] Let V be a finite dimensional inner product space over \mathbb{R} , and let W be a subspace of V. Prove that $V = W \oplus W^{\perp}$ where W^{\perp} denotes the orthogonal complement of W.
- 5. [10%] Define

$$S = \{ A \in M_{2\times 3}(\mathbb{F}_p) \mid \operatorname{rank}(A) = 1 \}$$

where p is a prime number, \mathbb{F}_p is the finite field of p elements, and $M_{2\times 3}(\mathbb{F}_p)$ is the set of all 2×3 matrices over \mathbb{F}_p . Compute the number of elements in S.

- 6. [10%] Let A_n denote the alternating group on a set of n elements. Construct a surjective group homomorphism $\phi \colon A_4 \to A_3$ with kernel of ϕ isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 7. [10%] Prove that every finitely generated subgroup of the additive group \mathbb{Q}/\mathbb{Z} is finite cyclic.
- 8. [10%] An element a of a ring R is called *nilpotent* if $a^n = 0$ for some positive integer n. Show that the collection of all nilpotent elements in a commutative ring R is an ideal.

國立清華大學 104 學年度碩士班考試入學試題

糸所班組別:數學系數學組

考試科目(代碼):代數與線性代數(0102)

共 2 頁,第 2 頁 * 請在【答案卷、卡】作答

-

- 9. [10%] Let $\mathbb{Z}[\sqrt{5}]$ be the integral domain of all numbers $\alpha = a + b\sqrt{5}$ with $a, b \in \mathbb{Z}$, and set $N(\alpha) = a^2 5b^2$.
 - (1) Prove that $N(\alpha\beta) = N(\alpha)N(\beta)$ for any $\alpha, \beta \in \mathbb{Z}[\sqrt{5}]$.

.

- (2) Prove that α is a unit in $\mathbb{Z}[\sqrt{5}]$ if and only if $N(\alpha) = \pm 1$.
- 10. [10%] Let $K \subset \mathbb{C}$ be the splitting field of the polynomial $x^4 7$ over \mathbb{Q} . Find the degree of K over \mathbb{Q} .