國立清華大學104學年度碩士班考試入學試題

系所班組別:數學系 數學組

考試科目(代碼):高等微積分 (0101)

共 <u>1</u> 頁,第<u>1</u> 頁 *請在【答案卷】作答

Advanced Calculus (Pure Math)

- 1. (13 pts) If $(a, b) \subset \mathbf{R}$ is a bounded interval and $f: (a, b) \to \mathbf{R}$ is uniformly continuous, prove that f is bounded on (a, b).
- 2. (13 pts) Let $f:(0,1]\to \mathbb{R}$ be differentiable, and suppose that there is a positive constant m such that $|f'(x)| \le m$ for all $x \in (0,1]$. Define $a_n = f\left(\frac{1}{n}\right)$ for $n = 1, 2, 3, \cdots$. Prove that $\lim_{n \to \infty} a_n$ exists.
- 3. (13 pts) Investigate the continuity and differentiability of the function

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

at the point (0,0).

4. (13 pts) For $n = 1, 2, 3, \dots$, let

$$f_n(x) = \lim_{k \to \infty} (\cos n! \pi x)^{2k}$$
 $(x \in \mathbf{R}).$

Find $\lim_{n\to\infty} f_n(x)$.

- 5. (13 pts) Let X and Y be metric spaces, where X is compact. If f is a continuous one-to-one mapping of X onto Y, prove that f^{-1} is a continuous mapping of Y onto X.
- 6. (15 pts) Consider the vector field \overrightarrow{F} on \mathbf{R}^2 defined by

$$\overrightarrow{F}(x,y) = (e^x \sin y, e^x \cos y)$$

and let Γ be the path $y=x^2$ joining (0,0) to (1,1) in \mathbb{R}^2 . Evaluate the line integral $\int_{\Gamma} \overrightarrow{F} \cdot d\overrightarrow{s}$. Does this integral depend on the path joining (0,0) to (1,1)? Explain.

7. (20 pts) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by

$$f(x,y) = (x+y,2x+ay).$$

- (a) Calculate Df(x,y) and show that Df(x,y) is invertible if and only if $a \neq 2$.
- (b) Examine the image of the unit square $[0,1] \times [0,1]$ when a=1,2.
- (c) Find the area of the image of the unit disc $x^2 + y^2 \le 1$ when a = 3.