國立清華大學 103 學年度碩士班考試入學試題

系所班組別:數學系 應用數學組

考試科目 (代碼): 線性代數 (0202)

共1頁,第1頁 *請在【答案卷、卡】作答

LINEAR ALGEBRA

- 1. (10%) Prove or disprove that $\mathbb{R}^3\setminus\{(1,2,3)\}$ is a vector space.
- 2. (10%) Is a complex vector space always a real vector space? Is a real vector space always a complex vector space? Prove your claim or give a counterexample.
- 3. (10%) Suppose that A is an $n \times n$ matrix satisfying $A^{100} = 0$. Show that the matrix $I_n A$ is invertible where I_n is the $n \times n$ identity matrix.
- 4. (10%) Let A be an $m \times n$ matrix with column vectors $\mathbf{a}_1, ..., \mathbf{a}_n \in \mathbb{R}^m$. Suppose that $\mathbf{a}_1 + \cdots + \mathbf{a}_n = 0$, show that rank(A) < n.
- 5. (15%) Let $V = \mathcal{C}^1(0,1)$ be the vector space of continuously differentiable functions on the interval (0,1). Define $T:V\to V$ by

$$T(f)(t) = tf'(t)$$

Prove that every real number is an eigenvalue of T and find the corresponding eigenvectors.

6. (15%) Let $GL(n,\mathbb{R})$ be the space of all $n \times n$ invertible real matrices and $Mat(n,\mathbb{R})$ be the space of all $n \times n$ real matrices. Let d be the metric on $Mat(n,\mathbb{R})$ defined by

$$d(A, B) := \sup_{i,j=1,...,n} \{|a_{ij} - b_{ij}|\}$$

where $A = [a_{ij}], B = [b_{ij}]$. Is $GL(n, \mathbb{R})$ dense in $Mat(n, \mathbb{R})$ under the topology induced by d?

- 7. (15%) Given two $n \times n$ matrices A and B. Show that the characteristic polynomials of AB and BA are equal.
- 8. (15%) Suppose that A is an $n \times n$ matrix with all real entries and suppose that λ is a complex eigenvalue of A, with corresponding complex eigenvector $v \in \mathbb{C}^n$. Set $B = (A \overline{\lambda}I)(A \lambda I)$. Prove that the null space in \mathbb{R}^n of B is not $\{0\}$.