國	並	淆	華	大	學	命	題	紙	
La ma		ル 珠 #	788	10.5 Atta		3895 		985 985 (5)	_

52%	4000 1000	200 20			<u>*</u>		(5):34.1		
	八十八學年度	化學系	X X	(所) 化举、	鬼化 銀石	 土班研究生	担任李弘		
科目_	蘇合化學	## Top	_科號 0501 #	1000 100 000 100		98 38 B			
		2 - 240	_*FMC_0801_#		_ 頁 *語?	王杖卷【答	案卷】内作		
	50			<i>1</i> 44					
單	選題,每題二分	,不倒去	2						
9 487		1 - 1-4-4	-						
ī.	Which of the fol increasing energ	lowing co y?	rrectly lists the	conformatio	ms of cyc	dohexane i	n order of		
	33.5300 3.500 3.70		< half-chair						
	V2.25		wist < chair				Ž.		
			chair < boat						
	(D) chair < twis	st < boat	< half-chair			EQ.			
2.	Consider the equilibrium of each of the carbonyl compounds with HCN to produce cyanohydrins. Which is the correct ranking of compounds in order of increasing Kecfor this equilibrium?								
	(A) H ₂ CO < cyc	lohexano	ne < CH ₃ CHO -	< 2-methylc	velohers	mone			
	(A) H ₂ CO < cyclohexanone < CH ₃ CHO < 2-methylcyclohexanone (B) CH ₃ CHO < 2-methylcyclohexanone < cyclohexanone < H ₂ CO								
	(C) cyclohexanone < 2-methylcyclohexanone < H ₂ CO < CH ₃ CHO								
K	(D) 2-methylcy	dohexan	one < cyclohexar	none < CH ₃	CHO < F	I ₂ CO			
3.	The Hofmann elimination proceeds via a(n) pathway,								
()	(A) E1 (B) E2	(C) Saytzeff	(D) S ₁		ay,			
4.	Using Saytzeff's rule, choose the most stable alkene among the following.								
	(A) 1-methylcyclohexene (B) 3-methylcyclohexene								
	(C) 4-methylcyclohexene								
	(D) They are all o	The County of th	ability according	to Saytzef	fs rule.				
5.	Secondary amines	react wi	th the nitrocenic		5.48 K a				

5. Secondary amines react with the nitrosonium ion to generate:

(A) diazonium salts

(B) N-nitrosoamines

(C) oximes

(D) imines

國 立 清 華 大 學 命 題 紙

八十八學年度 化學系 系 (所) 化學、進化 組織上班研究生招生考試 综合化學 科號 0601 共 9 頁第 2 頁 *請在試卷【答案卷】內作答

- 6. Which of the statements below correctly describes the chair conformations of trans-1,4-dimethylcyclohexane?
 - (A) The two chair conformations are of equal energy.
 - (B) The lower energy chair conformation contains one axial methyl group and one equatorial methyl group.
 - (C) The higher energy methyl group contains two axial methyl groups.
 - (D) The lower energy chair conformation contains two axial methyl groups.
- 7. The protons marked Ha and Hb in the molecule below are _____

- (A) chemically equivalent
- (B) enantitopic

(C) diastereotopic

- (D) endotopic
- 8. What descriptive term is applied to the type of diene represented by 2,4-hexadiene?
 - (A) conjugated diene
- (B) cumulated diene
- (C) isolated diene
- (D) alkynyl diene
- 9. Which of the following alkyl halides would be suitable to use when forming a Grignard reagent?
 - (A) H2NCH2CH2Br
- (B) (CH₃)₂NCH₂CH₂Br
- (C) CH₃COCH₂CH₂Br
- (D) BrCH2CH2CH2CN
- 10. When (R)-2-butanol is treated with TsCl in pyridine, the product formed is:
 - (A) An achial compound
- (B) a mixture of diastereomers
- (C) a racemic mixture
- (D) a single enantiomer

	國	並	清	華	大	學	命	題	紙
	八十八學	年度	化學系		系(F	行) 化季、	島化 組石		# W# #4
=	<u>蘇</u>	含化學	5	科號 0)501 601_典_	9_頁第_	3_頁*語	在試卷【	答案卷】內
11.	Which o	f the folk	wing is a	geminal	l dihalide?				
			mocyclop		100		chlorope		
	(C) trai	19-1,4-au	odocyclob	exane	Œ) isobut	yl chloric	de	38
12.	Predict	the two r	nost likel	y mecha	nisms wh	ich occur	when 2	-iodohexa	ane is heated
	(A) E1 a	and E2	(B)	S _N 2 and	E2				\$
	(C) E1 a	and S _N 1	(D)	E2 and	S _N 1			*3	
13.	spectros	всору?	NAME OF STREET	0.0 A&&	l shift of a	n alkyny	ył carbon		MR.
	(A) 10 p	pm (r	3) 30 ppn	a (C)	70 ppm	(d) 12	0 ppm		
14.	the conce	itive solu entration the chlor × 10 ^{–3} M	ition. For of chloric	analysi de ions i ntration (B) 1.	ory and m s a 5,00-m n the dilut of the sau 5×10^{-4} M 2×10^{-1} M	L samp ted solut mple? (le is dilu	ted to 10	e of a 0 mL, and 3.0 × 10 ⁻³ M
15,	The rela	tive unce	22 6	the ans	swer to th		mon —	$3.00 \times 1.$ $416 \times 0.$	<u> </u>
	V-W	(2)07		, 0.01	(D) 0.00	01			
16.	(A) a bu	ret (B)	a beaker	led. The	e best piec a građuate	e of glas ed cyclin	sware to der	use is	
ŝ.	(D) a vo	lumetric	flask						25

17. A buffer with a pH of 10.0 is needed. Which of the following should be used?

- (A) acetic acid with a K_a of 1.8×10^{-5}
- (B) ammonia with a K_b of 1.8×10^{-5}
- (C) nitrous acid with a K_a of 7.1×10^{-4}

立

化學系 八十八學年度 系(所)化學、應化 組碩士班研究生招生考試 0501 科號 0601 共 9 頁第 4 頁 *請在試卷【答案卷】內作答 科目 综合化學

- (D) $H_2PO_4^-$ and PO_4^{3-} with a K_a of 4.5×10^{-13}
- 18. An indicator has a K_a of 6.4×10^{-6} , the conjugated acid is red, and the conjugate base is yellow. At what pH will the solution be red? (A) 5.2 (B) 5.5 (C) 4.0 (D) 4.7
- 19. If 50.0 mL of a 0.0134 M HCl solution is mixed with 24.0 mL of a 0.0250 M NaOH solution, what is the pH of the final mixture?
 - (A) 1.87 (B) 12.40 (C) 5.29 (D) 3.02
- 20. A solution containing HF is titrated with KOH. At the end point of the titration the solution contains
 - (A) equal amounts of HF and KOH
 - (B) H₂O, H⁺, OH⁻, K⁺, F⁻, and HF

(C) K+ and F-

- (D) KF and H₂O
- 21. What is the molar solubility of silver chromate?

 $(K_{sp} \text{ for } Ag_2CrO_4 = 1.2 \times 10^{-12})$

- (A) 1.1×10-6 (B) 1.1×10-4
- (C) 6.7×10^{-5}
- **(D)** 5.5×10^{-7}
- 22. What is the major cause of the deviation of the Beer's law for the measurement of the acetic acid absorbance?
 - (A) the dimer chemical reaction (B) the wavelength band with chosen
 - (C) the slit width of the monochrameter
 - (D) the background stray light.
- 23. For the reduction of MnO₄- to Mn²⁺, the correct form of the Nernst equation is

(A)
$$E = E^{0} + \frac{0.0591}{3} \log \left(\frac{[Mn^{2+}]}{[MnO_{4}][H^{+}]^{8}} \right)$$
 (B) $E = E^{0} + \frac{0.0591}{5} \log \left(\frac{[Mn^{2+}]}{[MnO_{4}][H^{+}]^{8}} \right)$

(C)
$$E^{o} = E + \frac{0.0591}{5} \log \left(\frac{a_{(Mn^{2+})}}{a_{(MnO)} \cdot a_{(H^{+})}^{8}} \right)$$

國 立 清 華 大 學 命 題 紙

八十八學年度 **化學系** 系 (所) ^{化學、馬化}組碩上班研究生招生考試 科目 **综合化學** 科號 0501 共 9 頁第 5 頁 ***請在試卷【答案卷】內作答**

(D)
$$E = E^0 + \frac{0.0591}{5} \log \left(\frac{a_{(Mn^2+)}}{a_{(MnO_2)} \cdot a_{(H^+)}^8} \right)$$

- 24. The K_{sp} of AgCl is 1.0×10^{-10} , and the K_{sp} of AgI is 8.3×10^{-17} . A solution is 0.100 M in I⁻ and Cl⁻. What is the molarity of iodide ions when AgCl just starts to precipitate?
 - (A) 1.0 × 10-5
- (B) 9.1×10^{-9}
- (C) 8.3×10^{-7}

- (D) 8.3 × 10-8
- 25. What kind of the information will be provided by the IR spectrum?
 - (A) Electronic transition
- (B) Nuclear spin
- (C) Nuclear Vibration

- (D) Electron spin
- 26. For an idealized octahedral complex ML₆, rotation of one L₃ triangular plane by 120° with respect to the opposite L₃ triangle would afford a structure with point group:
 - (A) C_{3h} (B) D_3 (C) C_{3v} (D) T_d (E) O_h .
- 27. Which dinuclear compounds listed below possesses a metal-metal double bond?
 - (A) $W_2(OMe)_6$ (B) $M_{02}(MeCO_2)_4$, $MeCO_2 = acetate$
 - (C) $Cp_2Re_2(CO)_4$, $Cp = C_5H_5$
- (D) Cp2W2(CO)6.
- 28. Which of the following parameters are belongs to the hexagonal crystal system.
 - (A) a = b = c; $\alpha = \beta = \gamma = 90^{\circ}$ (B) $a \neq b \neq c$; $\alpha = \beta = 90^{\circ}$, $\gamma \neq 90^{\circ}$
 - (C) $a \neq b \neq c$; $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ (D) $a = b \neq c$; $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$.
- 29. Crown ethers are polydentate ligands in which the ligating oxygen atoms are constrained in a large ring encircling the metal atom. How many carbon atoms can be found in the compound 18-crown-6?
 - (A) 18 (B) 12 (C) 10 (D) 8 (E) 6.

國立清華大學命題紙

 八十八學年度
 化學系
 系 (所) 化學· 集化 組頭土班研究生招生考試

 科目
 「蘇合化學
 科號 0601 共 9 頁第 6 頁 *體在試卷【答案卷】內作答

- 30. Thermolysis of Co₂(CO)₈ leads to the formation of a high nuclearity cluster complex with four cobalt metal atoms. Using the EAN rule, predict the total number of CO groups that are still associated with this tetrametallic compound.
 (A) 8 (B) 9 (C) 12 (D) 15.
- 31. Which of the following compound is most likely to crystallize in the crystal system called pervoskites?
 - (A) $MgCl_2$ (B) $BaTiO_3$ (C) CsCl (D) Nb_2O_5 (E) $MgAl_2O_4$.
- 32. Which of the following platinum compound possesses extremely high anti-tumor activity?
 - (A) PtCl₄²⁻ (B) trans-PtCl₂(NH₃)₂ (B) cis-PtCl₂(NH₃)₂ (C) Pt(NH₃)₄²⁺.
- 33. What is the most convenient technique to probe the structure of a volatile inorganic molecule, such as SiF₄ in gaseous phase?
 - (A) X-ray diffraction method (B) Electron diffraction method
 - (C) Extended X-ray absorption fine structure, EXAFS method
 - (D) Neutron diffraction method. (E) UV-Visible Spectroscopy.
- 34. Which of the following compound possesses the maximum number of unpaired electrons in the ground state.
 - $(A) \ Co(CN)_6^{3-}(B) \ LaCl_3 \ (C) \ O_2 \ (D) \ P_4O_{10} \ (E) \ Cu(H_2O)_4^{2+}.$
- 35. Which of the following phosphorus-bearing ligands PR₃ would form the strongest W-P bond in the tungsten carbonyl complexes W(CO)₅(PR₃).
 - (A) R = F(B) R = Cl(C) R = OMe(D) R = Me(E) R = Ph.
- 36. Which of the following statements is not true of diborane?
 - (A) It is an electron-deficient compound.
 - (B) It has two three center bonds.
 - (C) It is a highly reactive oxidizing agent.
 - (D) It is a Lewis acid. (E) It has two different types of hydrogen atoms.

化學系 八十八學年度 系 (所) 化學·應化 組積土班研究生招生考試 科號 0501 共 9 頁第 7 頁 *請在試卷【答案卷】內作答 综合化学 科目

37. The NO₂-- ion forms linkage isomers in which either the nitrogen or the oxygen is bound to a transition metal ion. Which of the following ligands can also forms linkage isomers?

(A) CO₂ (B) SCN-(C) OH-(D) CO₃2-.

- 38. Which is correct for the binding energy of the following species? (B) $O_2^+ > O_2$, (C) $O_2 > N_2$, (D) $O_2 > N_2^+$ (A) $N_2^+ > N_2$
- 39. Which spin wave function is not associated with a 3 state? $(A)\frac{1}{\sqrt{2}}(\alpha\beta+\beta\alpha)$, $(B)\alpha\alpha$, $(C)\frac{1}{\sqrt{2}}(\alpha\beta-\beta\alpha)$, $(D)\beta\beta$
- 40. If the vibrational frequency of HF is 4000 cm⁻¹, what is the vibrational frequency of DF?

(A) ~4000 cm⁻¹, (B) ~2800 cm⁻¹, (C) ~2000 cm⁻¹, (D) ~3600 cm⁻¹.

41. Which one is INCORRECT in a reversible adiabatic expansion of an ideal gas if γ $=C_p/C_v$

(A) $P_1V_1^{\gamma} = P_2V_2^{\gamma}$, (B) $(T_2/T_1) = (V_1/V_2)^{\gamma-1}$, (C) $P_2V_2/P_1V_1 = T_2/T_1$, (D) $(T_2/T_1)=(P_2/P_1)^{1-\gamma}$

42. Which one of the following equations is INCORRECT?

(A) $\left(\frac{\partial T}{\partial V}\right)_{S} = \left(\frac{\partial P}{\partial S}\right)_{V}$, (B) $\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{D}$,

(C) $\left(\frac{\partial S}{\partial T}\right)_{\mathbf{v}} = \frac{C_{\mathbf{v}}}{T}$, (D) $\left(\frac{\partial G}{\partial T}\right)_{\mathbf{D}} = -S$

43. What is the number density of 1 torr gas at 300 K?

(A) $\sim 1 \times 10^{18}$ molecule cm⁻³, (B) $\sim 2 \times 10^{17}$ molecule cm⁻³,

(C) -3×10^{16} molecule cm⁻³,

(D) $\sim 4 \times 10^{15}$ molecule cm⁻⁸

44. For a system with C_p = a + bT, which one is correct?

立 屻 紙

	八十八學年度	化學系	系(所) ¹	^{化學、應化} 組碩士班研究生抗	
科目_	综合化学	·科號_(第8頁*請在試卷【答案	

(A)
$$\Delta H = \Delta H_0 + aT + \frac{b}{2}T^2$$
, (B) $\Delta S = a \ln T$, (C) $\Delta A = \Delta A_0 + b \ln T$, (D) $\Delta G = \Delta H_0 - aT \ln T - \frac{b}{2}T^2$

- 45. Which one is NOT colligative property (which depends on concentration rather than the identity of the molecules)
 - (A) frezing point depression,
- (B) vapor pressure lowering,

(C) capillary rise,

- (D) osmotic pressure
- 46. Which one is INCORRECT? The saturated solution has a concentration ymo
 - (A) $A_{(s)} \rightarrow A$ (saturated solution, concentration = y_m°), $\Delta G=RT$ lny,
 - (B) $A_{(s)} \to A$ (solution, x_{m^0}), $\Delta G = RT \ln \frac{x}{v}$,
 - (C) $A_{(s)} \rightarrow A$ (solution, 1_{m^0}), $\Delta G = -RT \ln y$
 - (D) A (solution, x_{m^0}) \rightarrow A (solution, 1_{m^0}), $\Delta G = -RT \ln x$
- 47. In a second-order reaction $A + B \rightarrow C + D$, the rate coefficient is k and the initial concentrations are $[A]_0 >> [B]_0$. To a reasonably good approximation, which one is correct?
 - (A) $\ln [B]/[B]_0 = -kt$,
- (B) $[B]/[B]_0 = \exp(-k[A]_0t)$,
- (C) $\ln \frac{[A]/[A]_0}{[B]/[B]_0} = \{[A]_0 [B]_0\}kt$, (D) $\frac{1}{[B]} \frac{1}{[B]_0} = kt$
- 48. For a first-order consecutive reaction

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$

the initial concentrations are $[B]_0 = [C]_0 = 0$. Choose the <u>INCORRECT</u> one

- (A) If $k_1 >> k_2$, [C] = [A]₀ $(1 e^{-k_2t})$
- (B) If $k_2 >> k_1$, [C] = [A]₀ $(1 e^{-k_1 t})$
- (C) [B] \Rightarrow [A]₀ e^{-k}₂^t at the later stage of reaction
- (D) [C] = $[A]_0$ at $t \to \infty$

八十八學年度 **化學系** 系 (所) ^{化學、鳥化} 組碩士班研究生招生考試 科目 综合化學 科號 0501 共 9 頁第 9 頁 *請在試卷【答案卷】內作後

49. At temperature T what is the fraction of Ar that has an energy exceeding E₀?

(A)
$$(\frac{3}{2}RT - E_0)\frac{3}{2}RT$$
, (B) $\int_{E_0}^{\infty} e^{-E/RT} E dE / \int_{0}^{\infty} e^{-E/RT} E dE$,

(C)
$$\int_{E_o}^{\infty} e^{-E/RT} dE / \int_{0}^{\infty} e^{-E/RT} dE$$
, (D) $\int_{E_o}^{\infty} e^{-E/RT} E^{1/2} dE / \int_{0}^{\infty} e^{-E/RT} E^{1/2} dE$

- 50. What is the symmetry group of ethylene (C2H4)?
 - (A) C_{2v}, (B) C_{2h}, (C) D_{2h}, (D) D_{2d}