國 立 清 華 大 學 命 題 紙

(5%) 1. A two dimensional harmonic oscillator has the potential energy function

$$V(\mathbf{x},\mathbf{y}) = \frac{\mathbf{k}}{2}(\mathbf{x}^2 + \mathbf{y}^2)$$

- (a) Write the time-independent Schrödinger equation for it.
- (b) Find the energy eigenvalues and the degeneracies for the third lowest energy level.
- (6%) 2. Explain the following terms and give an example for each one.
 - (a) Selection rule of vibrational spectra
 - (b) Fine-structure coupling
 - (c) LS coupling
- (8%) 3. Considering a benzene molecule,
 - (a) How many electrons does its have?
 - (b) What is its symmetry?
 - (c) Using localized valence bond for σ bondings and delocalize MO for π bondings, place all the electrons in proper orbitals. You do not have to label the symmetry of each orbital.
- (3%) 4. The standard enthalpy of formation of N₂O₄(g) is +9.2 kJmol⁻¹, the equilibrium constant of the synthesis of N₂O₄(g) from N₂(g) and O₂(g) is K₁ at 273K, what is the equilibrium constant expressed in term of K₁ at 400°C?
- (3%) 5. The partition function is the fundamental concept of statistical thermodynamics.
 - (a) What is the definition of vibrational partition function?
 - (b) What is the electronic partition function of H₂ at room temperature?

國立清華大學命題紙

The gas obeys the equation of state

$$(P + \frac{n^2 a}{V^2})V = nRT$$

- (2%) (a) Find the reversible expansion work for a mole of gas under isothermal condition from V₁ to V₂.
- (3%) (b) Find $(\frac{\partial E}{\partial V})_T$, in which E denotes the internal energy.
- (4%) (c) Derive an expression for ΔG for the process in (a).
- (2%) 7. Determine the number of degrees of freedom for the system of ice in a solution of water and alcohol.
- (4%) 8. Show that if a solute follows Henry's law in the form of P₂=k'x₂, then the solvent must follow Raoult's law. P₂ and x₂ are vapor pressure and mole fraction of solute, respectively.
 - We consider a reversible elementary reaction

$$A \xrightarrow{\mathbf{k}_1} B$$

where k_1 is the forward rate constant and k_{-1} is the reverse rate constant.

- (1%) (a) Write down the differential rate equation for this reaction.
- (4%) (b) Assume that the initial concentrations of A and B are A₀ and zero, respectively, solve the concentration of A as a function of time.
- (1%)
 (c) Under (b) conditions, what is the half-life time constant to reach equilibrium of the reaction. (Time required for [A][A]_∞ to drop to half of its initial value.)

八十五學年度 化 學 系 化學,是用化學組碩士班研究生入學老試 科目 物理化學及分析化學 科號 0703 共 5 頁第 3 頁 *請在試卷【答案卷】內作答

(4%) 10. For an enyzme reaction given below

$$A + B \xrightarrow{k_1} AB \xrightarrow{k_2} A + C$$

where A is the enzyme, B is the substrate, AB is the enzyme-substrate complex, and C is the product. Draw a Lineweaver-Burk plot of 1/v vs. [B]⁻¹ for this reaction; v denotes the reaction rate. Indicate the value of slope and intercept of the plot. Apply the steady-state approximation to the concentration of complex AB.

- (5%) 11. Define and claborate on the following terms:
 - (a) Internal standard
 - (b) Standard addition
 - (c) S/N ratio
 - (d) Detection limit
 - (e) Sensitivity
- (5%) 12. Draw the circuit schemes of the operational amplifier doing the following functions for signal processing
 - (a) current to voltage converters
 - (b) voltage follower
 - (c) differentiator
 - (d) high pass filter
 - (e) inverting voltage amplifier
- (5%) 13. (a) Describe the four major parts of the spectrophotometer for a single beam and a double beam design.
 - (b) What are the basic principles (or law) used in the spectrophotometry for qualitative and quantitative analysis.

國立清華大學命題紙

- (5%) 14. Describe the following instrumentation for the metallic element analysis
 - (a) X-ray fluorescence (XRF)
 - (b) Graphite atomiser-Atomic Absorption
 - (c) ICP-Atomic Emission Spectroscopy
 - (d) ICP-Mass Spectrometry
 - (e) Cold Vapor-Atomic Absorption Spectroscopy
- (5%) 15. (a) Describe the basic principle of the two electrochemical methods: polarography and anodic stripping voltammetry.
 - (b) What are the advantages of anodic stripping voltammetry over polarography in terms of sensitivity and detection limit?
- (5%) 16. The standard electrode potentials for Pt| Fe³⁺, Fe²⁺ and Pt| Ce⁴⁺, Ce³⁺ are 0.771 and 1.61V, respectively. Calculate
 - (a) the potential at the half end point
 - (b) the potential at the end point
 - (c) the potential at $[Ce^{4+}] = 2 \cdot [Fe^{2+}]$ in the titration of 0.050 mol Fe^{2+} with Ce^{4+} solution.

(Assume total volume of solution at end point is 1 dm³ and that all activity coefficients are unit.)

- (5%) 17. A coastal marine sediment was analyzed for its iron content. Sevent replicate measurements were made on a random sample of the marine sediment. The results were: 3.36, 3.20, 3.15, 3.12, 3.10, 3.09 and 3.06% of iron (wt/wt).
 - (a) Calculate the sample mean and the sample standard devation.
 - (b) Calculate the 90% confidence interval for the iron content of the marine sediment. (Student t values = 2.015, 1.943 and 1.895 for degree of freedom 5, 6, and 7 respectively).

國立清華大學命題紙

八十五學年度 化 學 系 化學·馬用化學組碩士班研究生入學考試 科目物理化學及分析化學科號 0603 共 5 頁第 5 頁 #讀在賦卷【答案卷】內作答

- (c) Use Q-test to point out the outlying value. (the rejection quotient, Q₉₀=0.51 for sevent measurements)
- (d) Calculate the 90% confidence interval after Q-test

(5%) 18. Calculate

- (a) The absorptivity if a sample in a l cm path cell with concentration of 0.5×10^{-3} M shows an absorbance of 0.265 absorbance units at 595 nm ($\lambda_{\rm max}$).
- (b) The partition coefficient, $K_D = \frac{(Cs^+)(s)}{(Cs^+)(aq)}$ (weight M⁻¹) after passing 100 ml of 0.005 M Cs⁺ solution through an ion-exchange resin and the concentration of Cs⁺ in solution was found to be 5 ppm.
- (5%) 19. What types of GC column would be your initial choice for the analysis of
 - (a) chlorinated pesticides in a natural water sample
 - (b) volatile solvents in waste water
 - (c) oil contamination in water
- (5%) 20. (a) Calculate the relative isotope abundance of M+ with molecular formula $C_{12}H_4O_2Cl_3$ (m/e = 285, 287, 289, 291).
 - (b) The exact mass of CO is 27.9949 and that of C₂H₄ is 28.0313. What resolution is necessary to just separate CO+ and C₂H₄+ found in a mixture of carbon monoxide and ethylene? Compare this requirement with that necessary to separate C₂₀H₄₀+ and C₁₉H₃₆O+, both nominally at m/e =280.