- (6%) 1. (a) Draw the circuit scheme of a photomultiplier including a load resistor (R_L) to show output voltage from light signal.
 - (b) When viewing scattered photons $(2.2 \times 10^{12} \text{ photons S}^{-1})$ through a filter (transmission 5%) and its quantum efficiency is 20% and—its gain 10^6 , (the output is fed across a 50 Ω load resistor), calculate the output voltage expected from the scattered photons.
 - (c) If a 5 cm diameter photocathode is positioned 10 cm from the light source, calculate the solid abgle of the photocathode view.
- (6%) 2. 10 mTorr CH₂F₂ (at room temperature, T=298K) is photolyzed at 193 nm by Laser radiation (10 mJ in a 1 cm diameter beam and 1 cm path length), calculate
 - (a) the laser radiant flux density
 - (b) concentration of CHF produced from photolysis; $CH_2F_2 + hv \longrightarrow CHF + HF$ $(\lambda=193nm)$
 - (c) What would be the situation if a 1 J pulse at 193 nm was used?

For the purpose of this calculation we shall assume that the absorption coefficient of CH_2F_2 at this wavelength is $3\times10^{-18} cm^2$, and that the quantum yield for CHF production is unity, and that the Beer's Law approximately is

$$I_{abs}/I_o = \epsilon \cdot c \cdot l$$

- (6%) 3. Define and elaborate the polarization of light as
 - (a) linear polarization
 - (b) circular polarization
 - (c) elliptical polarization

八十四學年度 化學研究 所 **應用化學** 組碩士班研究生入學考試 所 **應用化學** 組碩士班研究生入學考試 物理化學及分析化學 科號 0703 共 7 賈第 2 賈 *請在試養【答案卷】內作答

(7%) 4. For FT-IR Spectroscopy

- (a) how to determine the resolution $(\Delta \overline{v})$
- (b) how to determine the maximum range of frequency $(\bar{\nu}_m)$
- (c) What is the throughput advantage?
- (d) What is the multiplex advantage?
- (9%) 5. A new method for the analysis of copper was tested with a sample known to contain 16.68% Cu

Sample	% Cu Found
1	16.54
2	16.64
3	16.30
4	16.67
5	16.70

- (a) Evaluate the mean and the median percentages of copper for these data.
- (b) Apply the Q test (90% confidence level, Qcrit =0.642) to the outlying result.
- (c) Which value the mean or the median do you prefer as the "best" value for this analysis? Define your answer in a sentence or two.

戜	11	清	ν-	華	大	學	බ්	題	紙
---	----	---	----	---	---	---	----	---	---

	八十四學年度	化學研?	究	 _所_	化學 應用	组 化學 :	組碩:	上 班	 I研究生/	/學考		
科目	物理化學及分析化學	科號_	0603 0703						. 4			內作答

(6%) 6. A 1.219 g sample that contained (NH₄)₂SO₄, NH₄NO₃, and inert materials was diluted to 250.0 mL in a volumetric flask. A 50.00 mL aliquot was heated with strong NaOH, and the liberated NH₃ was distilled into 30.00 mL of 0.08421 M HCl. The excess HCl required 10.17 mL of 0.08802 M NaOH. A 25.00 mL aliquot of the sample was made basic after the addition of Devarda's alloy to reduce the NO₃⁻ to NH₃. The NH₃ from both NH₄+ and NO₃⁻ was then distilled into 30.00 mL of the standard acid and back-titrated with 14.16 mL of the standard base. Calculate the percentages of (NH₄)₃SO₄ and NH₄NO₃ in the sample.

(10%)7. Briefly define or describe

- (a) Voltammograms.
- (b) Counter- ion layer
- (c) Autoprotolysis
- (d) Faraday
- (e) Volhard method

第 8 題至 24 題為填充題,請連續作答,每題分行作答。如果一題有多格填充, 請註明 a,b,c.... 之編號。只要答案,不要過程。<u>如応答案要寫在答案卷上</u>, 不是試題上。

- (4%) 8. Give the definition of the Gibbs energy <u>8a</u> and entropy <u>8b</u> and the criteria for spontaneous change in terms of the entropy <u>8c</u> and Gibbs energy <u>8d</u>.
- (4%) 9. Derive expression of ΔG for the isothermal expansion at temperature T from V_1 to V_2 of 1 mole of an ideal gas _____ or a van der Waals gas _____ 9b____.

國 立 清 華 大 學 命 題 紙

(6%) 10. The standard reduction potential at 25°C for Ce⁴⁺ and Fe³⁺ are listed as follows

$$Ce^{4+} + e = Ce^{3+} = 1.74 \text{ V}$$
 $Fe^{3+} + e = Fe^{2+} = 0.77 \text{ V}$

Using Ce4+, Ce3+ and Fe3+, Fe2+ as an example,

 (a) draw the variation of potential as an oxidizing agent is added to a solution of reducing agent (the titration curve)

- (b) give the potential for the equivalent point _____10e____
- (c) write down the reaction for the above case _____10f____

國 立 清 華 大 學 命 題 紙

	٦٦ ا	 \+e	四學年度	化學研	完		化學:		組稲	 i-+-##	研究3	+ 入趣	老就	
科目	物理化	学.	及分析化	學 科號	0603 0703									ė).
	(6%)	11	Civa tha	. oppnossi	on for ('a\ +1	ما	-: bacé				C	. 	
٠	(6%)	ļ.1.	Give the diatomic the trans. T, V, m (molecule slational	(of T, v partitio	(vib n fu	rati n ct i	onal :	freq or a	mo	cy)) _ naton	nic m	<u>11a</u> olecule	(b) (of
			molar he consisted	eat capa	city of	cons	tanı	t vol	ume	e (Ĉ	v) for	an	ideal	
	(4%)	12.	Compare the simple————————————————————————————————————		12a								e poin	t in
	(2%)	13.	The rate derived form radius of	from simp	ple colli terms o	sion f T,	the m _A	ory s and	ıs k r _A	bi = (me	ze ^{-e} e decul	kT, p ar we	lease g eight	give
	(2%)	14.	Plot the l where θ i As and P	is the fra	ction of	sites	occ	upie	i by	·A f				S =
	(2%)	15.	The proband x=3i quantum L is 1.0)	L/4 for p	particle-	in-a	-bos	k sys	ten	in	the	state	with	the
	(2%)	16.	The term	symbol f	or the N	l ato	mù	n the	gro	und	state	is		_

(hint: a term symbol gives three pieces of information)

- (2%) 17. The point group for the twisted, 90° allene, H₂C=C=CH₂ is
- (2%) 18. The ionization energy of the H atom in the ground state is 13.6 eV, therefore its 3d→ 2p transition energy is _____.
- (2%) 19. The vibrational frequency for the diatomic molecule $^{1}\mathrm{H}_{2}$ is 4400 cm⁻¹. That for the isotopic species $^{1}\mathrm{H}^{3}\mathrm{H}$ is _____ cm⁻¹.
- (2%) 20. The rotational constant (Be) for ¹H₂ is about 60 cm⁻¹. That for the isotopic species ¹H³H is ______.
- (2%) 21. Two of the sp² hybrid orbitals are given as $h_1 = \frac{1}{\sqrt{3}} s + \sqrt{\frac{2}{3}} p_y$ and $h_2 = \frac{1}{\sqrt{3}} s + \frac{1}{\sqrt{2}} p_x \sqrt{\frac{1}{6}} p_y$. The form for the third one is $h_3 =$
- (2%) 22. Write down explicitly the two-electron wavefunction including both the spin part and the spatial part for the 1S state of the He atom with the configuration $1s^12s^1$ (hint: express it in terms of $\alpha(1),\,\alpha(2),\,\beta(1),\,\beta(2),\,1s(1)$, $1s(2),\,2s(1),\,2s(2))$.

(3%) 23. A triatomic molecule X3 undergoes the following set of reaction:

$$X_3 \xrightarrow{k_a} X_2 + X \xrightarrow{(1)} X + X_2 \xrightarrow{k_b} X_3 \xrightarrow{(2)} X + X_3 \xrightarrow{k_c} 2X_2 \xrightarrow{(3)}$$

The reaction (3) is the rate-determing step. Therefore the rate of decomposition for X_3 can be expressed as $k[X_3]^n[X_2]^m$. The value for k is ______ (in terms of k_a , k_b , k_c), n is ______ and m is ______.

(3%) 24. The reaction rate for the radical reaction •CH₃ + CH₃CN → CH₄ + •CH₂CN is dramatically reduced - by a factor 28,000 - when CD₃CN is used in place of CH₃CN. Give your explanation ______ (hint; there is mass effect on potential energy surface with two or more independent contribution).