	副	立 法	· · ·	+	趣		星百	红	
		山 四 一 何	千		F				le sh
	96 学年度_	生醫工程身	界境境科学	_糸(所)	乙(環地	竟分子科学	上)_组织	士班入学者	扩武
科目	普通 (1	上 學	科目代碼2	2601 共 3	8頁第	_1_頁*	請在【答	案卷卡】内	1作答
(I) M	Iultiple Choices	. Please ch	oose the one	alternative t	hat best a	nswers the	question	. (56%, 2%)	of each)
(1)	One nanogram	doesn't seen	n like a very l	large numbe	r. How 1	nany mag	nesium at	oms are the	re in
	(A) 4.11×10^{12} (D) 6.02×10^{10}	² atoms ⁴ atoms	(B) (E)) 2.48 \times 10 ¹³) 1.46 \times 10 ¹⁴)	atoms atoms		(C) 6.83	\times 11 ¹⁵ atom	15
(2)	The Hall proce elemental carb and aluminum order to produc (A) 1.8×10^3 k (D) 1.6×10^3 k	tess for the proof to give all ore is 71% b ce 1.0×10^3 cg	oduction of a uminum meta by mass alum kg of aluminu (B) 2 (E) 3	luminum inv al and carbon inum oxide, um metal by 2.2×10^3 kg 3.3×10^3 kg	volves the n monoxid what mas the Hall I	reaction of de. If the s of alumi process?	of aluminu yield of f num ore r (C) 1.1 >	um oxide wi this reaction nust be min x 10 ³ kg	th is 82% ed in
(3)	Which of the fo (A) HCl	ollowing cor (B) CH ₃	npounds is a COOH	weak electro (C) C ₆ H ₁	olyte? ₂ O ₆	(D) (\mathcal{D}_2	(E) Na	C1
(4)	When 20.0 mL precipitate forr recovered CuS original Cu(NC	of a 0.25 M ns. The pro- is found to 1 $D_3)_2$ solution	$(NH_4)_2S$ solutions of $(NH_4)_2S$ solution	ution is adde en filtered fr of 0.3491 g,	ed to 150.0 From the sc what was) mL of a solution, dri the concer	solution o ed, and w ntration of	f Cu(NO ₃) ₂ , eighed. If f copper ion	, a CuS the s in the
	(A) 3.65×10^{-3}	³ M	(B)	$) 1.22 \times 10^{-2}$	2 M		(C) 3.33	$\times 10^{-2} \mathrm{M}$	
	(D) 4.87 × 10 ⁻²	² M	(E)	(E) 2.43×10^{-2} M					
(5)	Air contains 78 –10 °C?	3% N ₂ , 21%	O ₂ , and 1% A	Ar by volume	e. What	is the dens	sity of air	at 1,000 tor	r and
	(A) 1.3 g/L	(B) 2.6 g	y/L (C) 3.5 g/L		(D) 1.8 g/]	L	(E) 0.56g	ς∕L
(6)	Which stateme (A) The averag the same te	nt is false? e kinetic ene mperature.	ergies of mole	ecules from s	samples o	f different	"ideal" ga	ases are the	same at

- (B) The molecules of an ideal gas are relatively far apart.
- (C) All molecules of an ideal gas have the same kinetic energy at constant temperature.
- (D) Molecules of a gas undergo many collisions with each other and the container walls.
- (E) Molecules of greater mass have a lower average speed than those of less mass at the same temperature.

	或	立	清	華	大	學	命	題	紙	
	96 學年周	<u> 度生醫_</u>	L程與環	<u> 境科學</u>	系(所)	乙(環	境分子科	<u>+學)</u> 組石	領士班入學考	試
科目	普通	化學	科目	代碼2	<u>2601</u> 共_	_8頁第_	<u>2</u> 頁	*請在【答	答案卷卡】內	作答
(7)	A 100.0 mL ammonia in reaction occ	sample of a calorime curs when	f 0.2 M aq eter whos the two so	ueous hy e heat ca plutions a	ydrochloric pacity (exc are mixed.	acid is ad luding any	ded to 10 y water) i)0.0 mL of is 480 J/K.	0.2 M aqueou The followi	is ng
	HCl _{(aq}) + NH _{3(aq)}	\rightarrow N	H ₄ Cl _(aq)						
	The tempera (A) 154 kJ/r	ature incre mol (B)	ase is 2.34 1.96 kJ/n	4°C. C nol (alculate ∆H (C) 485 kJ/ı	I per mole mol (l	of HCl a D) –1.96	ınd NH₃ re kJ/mol	acted. (E) –154 kJ	/mol
(8)	The atomic : and for Cl ⁻ i the ionic rad (A) The inner inner ele (B) The inner chloride (C) The oute sodium of (D) The oute sodium of (E) Monator	radius of s s 181 pm. lius increa er electron ectrons in t er electron anion. ermost elec cation do. ermost elec cation do. mic ions a	odium is In going : ses? s in the so the chlorid s shield th ctrons in c ctrons in c	186 pm a from Na odium ca de anion he valence chloride o chloride o than the	and of chlo to Cl in Pe tion shield do. ce electrons experience experience atoms from	rine is 100 riod 3, wh its valence more effe a smaller of a larger ef) pm. The y does th e electror ectively in effective fective n ey are for	ionic radi e atomic radi s more eff the chlori nuclear chau uclear chau	us for Na ⁺ is 1 adius decrease fectively than t ine atom than arge than those	02 pm while the in the in the in the
(9)	Examine the	e phase dia	igram for Pinssor d 760 torr	the subst	tance Bogu	esium (Bo)	and sele	ct the corre	ect statement.	

Temperature

	武	τ [†]	法	茬	*	與	命	是百	纸		
			何如四次的	+ .		-	" " 		الم من 19 م مراجع 19 م		
	96 學年度	生醫工	程與環境利	十學系	(所)	乙(環	境分于科	学)_组研	1 士班入學考試		
科目	普 通	化學	科目代4	碼 2601	共{	3頁第_	_ <u>3_</u> 頁 ;	*請在【答	案卷卡】內作答		
	(A) $Bo_{(s)}$ has a lower density than $Bo_{(l)}$.										
(B) The triple point for Bo is at a higher temperature than the melting point for Bo.											
	(C) Bo changes from a solid to a liquid as one follows the line from C to D.(D) Bo changes from a liquid to a gas as one follows the line from C to D.										
	(E) Point B	represent	s the chiical	temperati	ure and	pressure	IOF B0.				
(10)	Ozone (O ₂) i	n the atmo	sphere can h	be reacted	with ni	tric oxid	e (NO) to	produce or	evgen gas and		
()	nitrogen diox	ide. Wh	at is the entl	halpy char	nge whe	n 8.50L	of ozone a	t a pressu	e of 1.00 atm and		
	25°C reacts v	with 12.0 I	l of nitric ox	kide at the	same in	itial pres	ssure and t	emperatur	e? $[\Delta H^{\circ}_{f}(NO) = 90.4$		
	kJ/mol; ∆H° _f	$(NO_2) = 3$	3.85 kJ/mol	; ∆H° _f (O ₃)) = 142.	2 kJ/mol]	-	•		
	(A) –69.2 kJ	(B) ·	-19.7 kJ	(C)	-1690	сJ	(D) -97.6	5 kJ	(E) –167 kJ		
(11)	Green light h	as a wave	length of 52	0 nm. Cal	culate th	ne energy	of one pl	noton of gi	reen light.		
	(A) 3.4×10^{-10}	40 J (B) 3.4 × 10 ⁻³⁰	J (C)	3.8 × 10)-2, Ì	(D) 3.4 ×	10 ⁻²⁷ J	(E) 3.8×10^{-19} J		
(12)	The longest	vavelenot	n of light tha	it causes e	electrons	to be ei	ected from	the surface	ce of a copper plate		
(12)	is 243 nm.	What is th	e maximum	velocity o	of the el	ectrons e	ejected wh	en light of	wavelength 200 nm		
	shines on a copper plate?										
	(A) 1.48 × 10) ⁶ m/s	(1	B) 6.22 ×	10 ⁵ m/s		(C) 4.67×10^4 m/s				
	(D)1.97 × 10	⁴ m/s	(I	(E) 1.34×10^6 m/s							
(13)	Which one of	f the follow	wing sets of	quantum	number	s is not p	ossible?				
	-	n		1		m _l		m _s			
	(A) ·	4		3		-2	-	-1/2			
	(B)	3		2		-3	-	-1/2			
	(C) (D)	3		0		0	-	-1/2			
	(D) (E)	4		1		1	-	-1/2			
	(L)	2		0		0	-	-1/2			
(14)	Consider the	species Ci	2^+ , Cl ₂ , and	Ch ⁻ . W	hich of	these spe	cies will h	e paramag	metic?		
	(A) Only Cl		(H	B) Cl_2^+ and	d Cl ₂		LIVE TRAK	(C) (Cl_2 and Cl_2		
	(D) Cl_2^+ and	Cl_2^-	(E	E) All thre	e are pa	ramagne	tic				
	-				-	-					

	國	立	清	華	大	學	命	題	紙	
	96 學年度	生醫	工程與環:	境科學_	_系(所)	_乙(環	境分子科	學)組	碩士班入學	學考試
科目	普通	化學	科目	代碼	<u>2601</u> _共_	8_頁第	<u>4_</u> 頁 <u>*</u>	請在【	答案卷卡】	內作答
(15)	Potassium br Br ⁻ ions are and corners of anions, calcu (A) 230 pm	comide, K 133 pm a of the uni llate the l (B)	Br, crystand 195 pr t cell, whi ength of a 328 pm	allizes lil n, respec ile the K a unit cel (ke NaCl in s stively. As ions are p l edge. (C) 523 pm	a face-cen ssuming th ositioned (tered lattic hat all Br [–] i along the e D) 656 pm	e. The ons are p dge alter	ionic radii positioned mating bety (E) 780 pr	of K ⁺ and in the face ween n
(16)	(16) The thermal decomposition of acetaldehyde, CH ₃ CHO → CH ₄ + CO, is a second-order reaction. The following data were obtained at 518°C.									
		in and generation	Time	e (s)		Pressur	e CH ₃ CHC) (mm-H	[g)	
			0				364			
			42	2			330			
			10	5			290			
	-		72	0			132			
	Based on the	data giv	en. what i	s the hal	f-life for th	e disappea	rance of a	cetaldehy	vde?	
	(A) 1.5×10^{4}	s s	(B) 410 s	3 ((C) 5.4 × 1() ⁷ s	(D) 520 s		(E) 305 s	
(17)	 Which of the (A) At equili (B) Equilibri (C) There is (D) At equili reverse re (E) At equili 	e followin brium the um is the only one brium, th eaction. brium, th	ng is a true e total com e result of set of equ e rate com e rate of t	e statement acentration the cessan uilibrium astant of the he forwa	ent about ch on of produ ation of all concentrat the forward rd reaction	emical eq cts equals chemical o ions that e l reaction i is equal to	uilibria in ; the total co change. quals the K is equal to o as the rate	general? oncentration C_c value. the rate of the r	tion of read constant for reverse read	otants. r the otion.
(18)	Arrange the a (A) HF < HC (C) HCl < H (E) HF < H ₂ S	acids HF, Cl < HNC NO3 < H2 SO4 < HC	HCl, H2S 93 < H2SO 2SO4 < HI Cl < HNO	SO4 and 1 4 5	HNO₃ in or	der of inc (B) HCl (D) HF <	reasing acid < HF < H ₂ < HNO ₃ < 1	l strengt SO ₄ < H H ₂ SO ₄ <	h. NO₃ HCl	
(19)	Arrange the	following HI	, substanc F _(g) , Na	es in the F _(s) , S	order of in SiF _{4(g)} , S	creasing e iH _{4(g)} ,	ntropy at 2 Al _(s)	5°C.		

										-
	威	立	清	華	大	學	命	題	紙	
	96 學年度	生醫工	二程與環	境科學	_系(所)	乙(環	境分子科	學)_組研	复士班入	學考試
科目	普 通	化學	科目	代碼	<u>601</u>	8_頁第_	_5_頁*	*請在【答	案卷卡	】內作答
	 (A) SiF_{4(g)} < (B) HF_(g) < A (C) Al_(s) < N (D) Al_(s) < H (E) NaF_(s) < A 	SiH _{4(g)} < Al _(s) < NaH aF _(s) < HF F _(g) < NaH Al _(s) < HF	$\operatorname{NaF}_{(s)} < \operatorname{SiF}_{2}$ $F_{(s)} < \operatorname{SiF}_{2}$ $F_{(g)} < \operatorname{SiF}_{2}$ $F_{(s)} < \operatorname{SiF}_{2}$ $F_{(g)} < \operatorname{SiF}_{2}$	$HF_{(g)} < A_{(g)} < SiH_4$ $A_{(g)} < SiF_4$ $A_{(g)} < SiF_4$ $A_{(g)} < SiH_4$ $A_{(g)} < SiH_4$	l(s) (g) (g) (g) (g)					
(20)	Sodium carb	onate can	be made	by heatin	g sodium	bicarbonat	te:			
	2N	aHCO _{3(s)} ·	$\rightarrow Na_2CO$	D _{3(s)} + CO	$H_{2(g)} + H_2O$	(g)				
	Given that Δ will the react (A) 104 K	H° = 128. tion becor (F	9 kJ/mol ne sponta 3) 295 K	and ∆G° meous un	= 33.1 kJ/ der standa (C) 321 K	mol at 25° rd state co	°C, above v nditions? (D) 401 k	what minis	mum ten (E) 5	nperature 25 K
(21)	For the react following sta (A) The reac (B) The reac (C) ΔG° beco (D) The reac (E) The reac	ion H _{2(g)} - utements i tion is on tion is spo omes less tion is spo tion is at e	F S _(s) → I s true? ly sponta ontaneous favorable ontaneous equilibriu	$H_2S_{(g)}$, Δ neous at less at all temps as temps sonly at h m at 25°C	$H^{\circ} = -20.$ ow temper aperatures erature inc igh tempe C under sta	2 kJ/mol a ratures. reases. ratures. ndard con	and $\Delta S^{\circ} =$ ditions.	+43.1 J/K	-mol.	Which of the
(22)	The substand (A) a strong I (D) a weak I	e of AlCl Brönsted a Lewis acid	3 is consi acid	dered as (B) a (E) a	weak Brö neutral co	nsted acid mpound		(C) a stror	ng Lewis	s acid
(23)	The half-read is: (A) $Na^+ + e^-$	tion that \rightarrow Na	occurs at	the cathor (B) Na \rightarrow	de during → Na ⁺ + e ⁻	electrolysi	is of an aq (C) 21	ueous sodi H ₂ O + 2e ⁻	ium iodi → H_2 +	de solution
(24)	(D) $I_2 + 2e^{-1}$ In the compl (A) +1	→ 2Γ ex ion [Co (B) +	0(en) ₂ Br ₂ 2	(E) $2\Gamma \rightarrow$] ⁺ , the oxi (C)	→ $I_2 + 2e^-$ dation nur +3	nber of Co (D)	o is) −2	(E)) —1	

photon with a wavelength λ of 523 nm. Calculate the value of Δ in the complex, in kJ/mol. (3%)

	威	立	清 華	大	學	命	題	紙	
	96 學年度	<u>走醫工</u> 和	呈與環境科學		乙(環北	竟分子科學	▶) 組碩	士班入學考	胡
科目	普通	化學	_ 科目代碼	2601共	<u>8_</u> 頁第_	_ <u>7_</u> 頁 <u>*</u>	請在【答	案卷卡】內	作答
(III) (IV)	Scuba diving health. A t (a) What we breathing (b) Usually water pr purpose. to dilute inert gas (3%) Ozone is the	is an exhilat ypical dive r ould happen g? Please r the divers w essure at all Of variou oxygen gas is needed to most import	rating sport and night be 10 to 2 if a diver rose t use the change i ill equip with so time and inert g s inert gases us in scuba tank. dilute oxygen ant atmospheric	l is also a sa 20 meters, b o the surfac n pressure t cuba tank to gas is usuall ed, helium (Please use gas in scuba	fe activity ut dives to e from a de o explain t ensure tha y used to d He) gas is Dalton's le a tank and tect human	for trained 30 meters epth of 15 his phenor at the air pr lilute oxyg the often to aw and gas why helium	l individua are not un meters rat menon. (3 ressure the gen gas for used gas r s solubility m is better gainst UV	als who are in ncommon. ther quickly %) ey breathe ea meeting thi ather nitroge y to explain t than nitrog radiation. Gi	in good without quals the s m (N ₂) why en? iven that
	the quantity Earth at STI	of ozone in [•]	the stratosphere	e at 26 km 18	s equivaler.	nt to a 3.0-	mm-thick	layer of ozo	one on
	(a) Calculat radius of	e the number f Earth is 63	r of ozone mole 70 km. (3%)	ecules in the	stratosphe	ere and the	ir mass by	assuming t	he
	(b) In the m winter. chlorina example	id-1980s, ev Now it is cl ted compour , explain hov	idence began to ear that the pol ds such as Free w CFCs deplete	accumulate ar ozone ho on (chloroflu the ozone r	e that an "A le is mainl lorocarbon nolecules	Antarctic o y caused b 1s, CFCs). in the strat	ozone hole by the mas Taking 1 cosphere?	s'' develope sive use of Freon-12 as (3%)	d in late an
	(c) If ozone oxygen r in the str	is generated molecules ca ratosphere at	according to th n absorb to con 26 km when o	ne process 3 avert to ozor xygen moleo	$O_{2(g)} \rightarrow 20$ ne. How the solution of the second	D _{3(g)} , pleas many ozor rb the wav	e calculate ne molecu elength? (e the wavele les can be pi 4%)	ngth the roduced
	-	Species	ΔH_{f}^{0} (1	kJ/mol)	ΔG_{f}^{0} (kJ	l/mol)	ΔS_{f}^{0} (J/2	mol-K)	
	-	O _{2(g)}		0	0		205	5.0	
		O _(g)	24	9.2	231	.7	160	.95	
	_	O _{3(g)}	14	2.2	163	.0	238	.82	

(V) A quantitative measurement of how efficiently spheres pack into unit cells is called packing efficiency, which is the percentage of the cell space occupied by the spheres. Please calculate the packing efficiencies of a simple cubic cell, a body-centered cubic cell, and a face-centered cubic cell. (8%)

	國	Ţ	L	清	華	大	學		命	題	紙	
	96 學:	年度	生醫工	程與環	<u> 竟科學</u>	系(所	<u>5</u> (†	(環境	分子科	<u>}學)</u> 約	且硕士班入	、學考試
科目_	普i	通 化	學	科目	代碼	<u>2601</u> 共	8	頁第	<u>8_</u> 頁	*請在	【答案卷卡	入作答

(VI) Acetylene (C₂H₂) has a tendency to lose two protons and form the carbide ion (C₂²⁻), which is present in a number of ionic compounds, such as CaC₂ and MgC₂. Please describe the bonding scheme in the C₂²⁻ion in terms of molecular orbital theory. Also compare the bond order C₂²⁻ with that in C₂. (8%)

- (VII) An acidified solution was electrolyzed using copper electrodes. A constant current of 1.18 A caused the anode to lose 0.584 g after 25 min.
 - (a) What is the gas produced at the cathode and what is its volume at STP? (3%)
 - (b) Calculate the experimental Avogadro's number. **Compare your result with** the generally accepted value of Avogadro's number. (3%)

Note: The atomic masses of elements are as follows:

H = 1.0	He = 4.0	C = 12.0	N = 14.0	O = 16.0	F = 19.0
Na = 23.0	Mg = 24.3	Al = 27.0	S = 32.1	C1 = 35.5	K = 39.1
Mn = 54.9	Cu = 63.5	Br = 79.9	I = 126.9		