
清 華 大 學 命 題 國 立 紙 95 學年度 生醫工程與環境科學 系 (所) 乙(環境分子科學) 組碩士班入學考試 科目 有機化學及物理化學 科目代碼 _3104 共 9 頁第 1 頁 *請在【答案卷卡】內作答 一、有機化學 單一選擇題 (50%;每題二分;務必以答案卡作答;答錯不扣分) 1. The structural formulas indicate that one should predict that which of the following compounds has the largest dipole moment? (A) CCl₄ (B) O = C = O(C) $(CH_3)_2C = C(CH_3)_2$ (D) trans ClCH = CHCl(E) cis ClCH = CHCl 2. Which of the following compounds has a bond formed by overlap of $sp - sp^3$ hybrid orbitals? (A) $CH_3 - C \equiv C - H$ (B) $CH_3CH = CHCH_3$ (C) $H - C \equiv C - H$ (D) CH₃CH₂CH₂CH₃ (E) $CH_2 = CH - CH = CH_2$ 3. A tertiary alcohol is formed when excess phenylmagnesium bromide reacts with (A) CH₃COOCH₃ (B) HCOOCH₃ (C) CH₃CHO (D) H_2CO (E) $CH_2 - CH_2$

- 4. If one assumes that substitution could occur at any unsubstituted position, which of the following compounds could form two and only two mononitration products?
 - (A) Chlorobenzene
 - (B) 1, 3, 5-Trichlorobenzene
 - (C) p-Dichlorobenzene
 - (D) 1, 2, 3, 4-Tetrachlorobenzene
 - (E) o-Dichlorobenzene
- 5. Treatment of propionaldehyde, CH₃CH₂CHO, with dilute sodium hydroxide causes an aldol condensation and the formation of
 - (A) CH₃CH₂COOCH₂CH₂CH₃
 - (B) CH₃CH₂CHOHCH(CH₃)CHO
 - (C) CH₃CH₂CHOHCH₂CH₂CHO
 - (D) CH₃CH₂COCH₂CH₂CHO
 - (E) CH₃CH₂COCH(CH₃)CHO

國 立 清 華 大 學 命 題 紙 95 幸年度 生鳌工程與環境科學 条 (所) <u>C(環境分子科學)</u> 無領土環入學考試 #4 <u>4 有機化學及物理化學</u> #4 目代碼 <u>3104</u> 共 <u>9</u> 頁第 <u>2</u> 頁 "號在【答案卷卡】內作答 6. Which of the following compounds has only a single sharp peak in its ¹ H nucker magnetic resonance spectrum? (A) $- + - + + + + + + + + + + + + + + + + $	1				and the second s			the second				
#18 有機化學及物理化學 #18代碼 3104 共 9 頁第 2 頁 *請在【答案卷十】內作答 6. Which of the following compounds has only a single sharp peak in its ¹ H nuclear magnetic resonance spectrum? (A) $\stackrel{CH}{\hspace{0.5mm}} \leftarrow = \leftarrow \stackrel{CH}{\hspace{0.5mm}} \\ H$ (C) $CH_3CH_2CH_2CH_3$ (C) $CH_3CH_2CH_4CH_3$ (D) PCH_2CH_3F (E) PCH_2CH_3F (E) PCH_2CH_3F (E) PCH_2CH_3F (C) CH_3CCCH_3 is allowed to react with hydrogen cyanide in the presence of a catalytic amount of sodium cyanide? (A) $CH_3CCCH_3CH_3$ (C) $(CH_3)_2C=C=NH$ (C) $(CH_3)_2C=C=NH$ (C) $(CH_3)_2C=C=CH_3$ (C) $(CH_3)_2C=C(CH_3)_2$ (C) $(CH_3)_2C=C(CH_3)_$			國	立	清	華	大	學	命	題	紙	
#18 有機化學及物理化學 #18代碼 3104 共 9 頁第 2 頁 *請在【答案卷十】內作答 6. Which of the following compounds has only a single sharp peak in its ¹ H nuclear magnetic resonance spectrum? (A) $\stackrel{CH}{\hspace{0.5mm}} \leftarrow = \leftarrow \stackrel{CH}{\hspace{0.5mm}} \\ H$ (C) $CH_3CH_2CH_2CH_3$ (C) $CH_3CH_2CH_4CH_3$ (D) PCH_2CH_3F (E) PCH_2CH_3F (E) PCH_2CH_3F (E) PCH_2CH_3F (C) CH_3CCCH_3 is allowed to react with hydrogen cyanide in the presence of a catalytic amount of sodium cyanide? (A) $CH_3CCCH_3CH_3$ (C) $(CH_3)_2C=C=NH$ (C) $(CH_3)_2C=C=NH$ (C) $(CH_3)_2C=C=CH_3$ (C) $(CH_3)_2C=C(CH_3)_2$ (C) $(CH_3)_2C=C(CH_3)_$		9	5 學年度 生	醫工程員	且環境科學	条(所) 7.(環)	谙分子科 學	() 组码十	田入學者	答言が	
 6. Which of the following compounds has only a single sharp peak in its ¹H nuclear magnetic resonance spectrum? (A) CH₃ ← CH₃ (A) CH₃ ← CH₃ (B) CH₃ ← CH₃ (C) CH₃CH₂CH₃CH₃ (C) CH₃CH₂CH₃CH₃ (C) CH₃CH₂CH₃CH₃ (C) CH₃CH₂CH₃CH (D) FCH₃CH₃CH₃ (E) CICH₂CH₃CH (E) CICH₂CH₃CH (H) COCH₃, is allowed to react with hydrogen cyanide in the presence of a catalytic amount of sodium cyanide? (A) CH₃CCH₂CCH₂CN (B) CH₃CCH₃CCH (C) (CH₃)₂C=C=NH (C) (CH₃)₂C=CCCH₃)₂ (C) (CH₃)₂C=CCCH₃)₂ (C) (CH₃)₂C=CC(CH₃)₂ (D) (CH₃)₂C=CC(CH₃)₂ 												
nuclear magnetic resonance spectrum? (A) $\begin{array}{c} CH_{a} \\ H \\ $		村日_月	硪115 文初	理化学	种日代码	_3104_	共	艮	貝 百 仕	人 合菜	下】内作合	
 8. Of the following, which compound is the strongest Brönsted-Lowry acid? (A) CH₃-CH₂-CH₂-OH (B) CH₃-CHBr-COOH (C) CH₃-C≡C-H (D) CH₃-CH₂-COOH 		件目 <u>有機化學及物理化學</u> 件目代碼 <u>3104</u> <u>共 9 頁第 2 頁 *請在【答案卷本】內作答</u> 6. Which of the following compounds has only a single sharp peak in its ¹ H nuclear magnetic resonance spectrum? (A) $\begin{array}{c} CH_{4} \\ H \\ \end{array}$ (B) $\begin{array}{c} CH_{4} \\ \end{array}$ (C) $CH_{3}CH_{2}CH_{2}CH_{3} \\ \end{array}$ (C) $CH_{3}CH_{2}CH_{2}CH_{3} \\ \end{array}$ (D) $FCH_{2}CH_{2}F \\ $ (E) $CICH_{2}CH_{2}CI \\$ 7. Which of the following is the major organic product when acetone, $CH_{3}COCH_{3}$, is allowed to react with hydrogen cyanide in the presence of a catalytic amount of sodium cyanide? (A) $\begin{array}{c} O \\ H \\ \end{array}$ (B) $CH_{3}CCH_{2}CN \\ OH \\ \end{array}$ (C) $(CH_{3}_{2}CC=C=NH \\ CN OH \\ (D) (CH_{3}_{2}C=-C(CH_{3})_{2} \\ H \\ \end{array}$										
(A) $CH_3 - CH_2 - CH_2 - OH$ (B) $CH_3 - CHBr - COOH$ (C) $CH_3 - C \equiv C - H$ (D) $CH_3 - CH_2 - COOH$		(E)	(CH ₃) ₂ C	C(CH ₃) ₂								
		(A) (B) (C) (D)	$CH_3 - CH_2$ $CH_3 - CHB$ $CH_3 - C = 0$ $CH_3 - CH_2$	$-CH_2 - COOH$ C - H - COOH	DH	ne stronge:	st Brönste	d-Lowry aci	d?			

CH₃

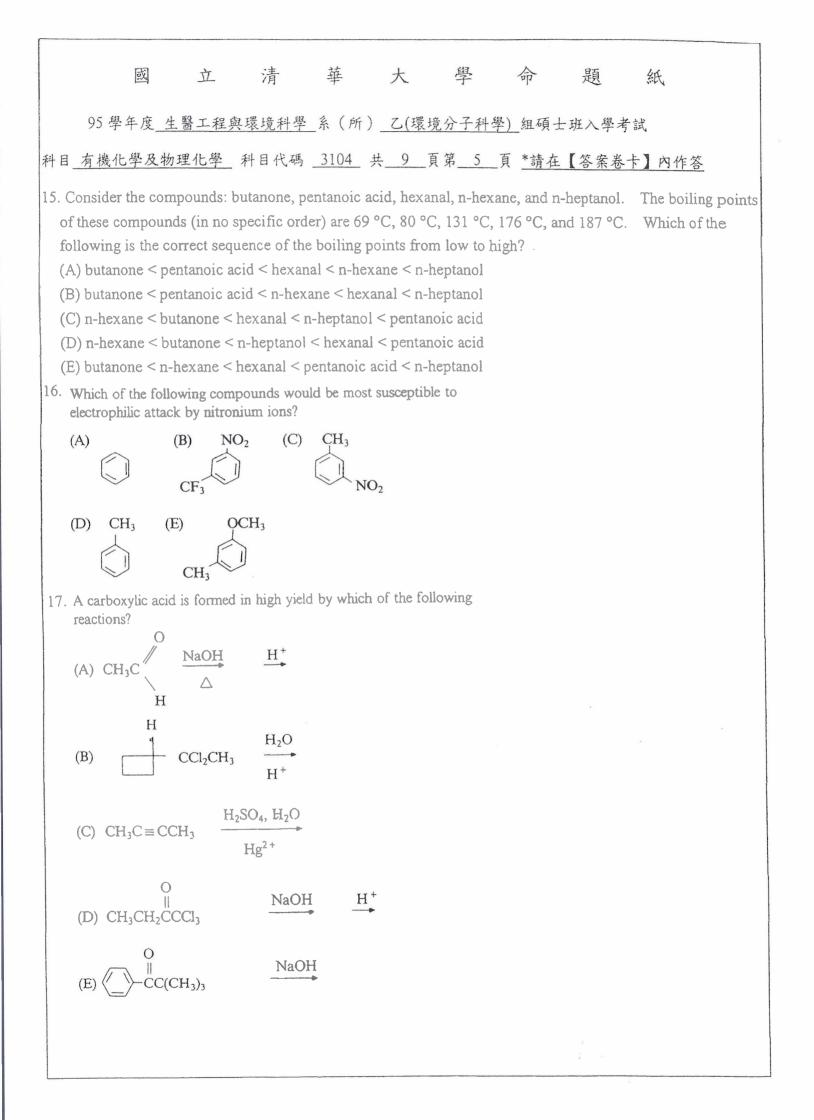
 NH_2

(E) CH₃CH₂ NH₂

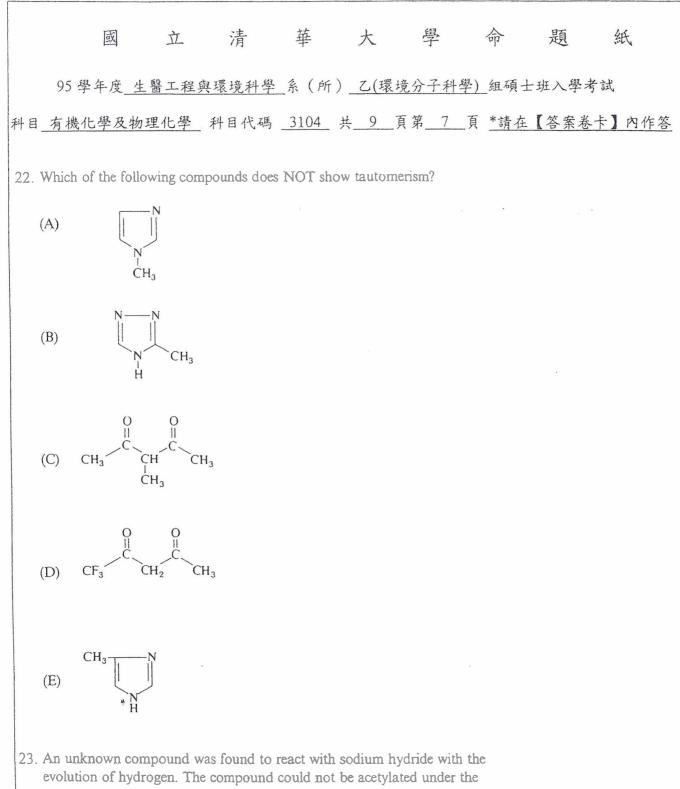
國立清華大學命題紙

95學年度_生醫工程與環境科學系(所)_乙(環境分子科學)組碩士班入學考試

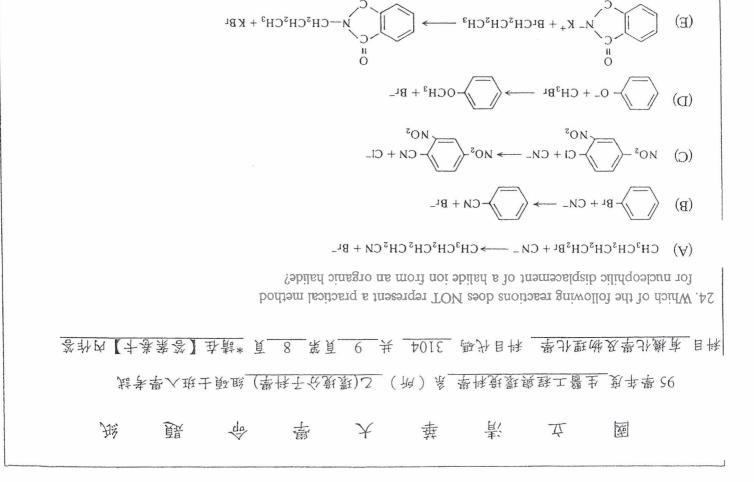
科目_有機化學及物理化學_科目代碼_3104_共_9_頁第_4_頁 *請在【答案卷卡】內作答


^{11.}
$$(1)$$
 (1) (2) (3) (5) (1) (2) (3) (5) (2) (2) (3) (5) (2)

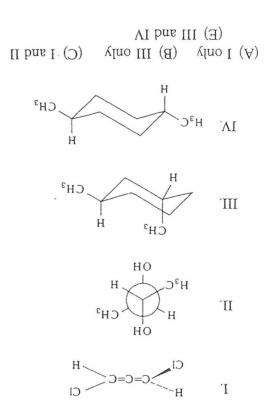
In the structural formula shown above, which of the numbered hydrogen atoms is LEAST susceptible to substitution by Cl radicals? (Assume that the reaction occurs by a free radical mechanism under reaction conditions in which substitution of hydrogen is selective.)


(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

- The concept that best explains the greater volatility of o-nitrophenol over p-nitrophenol during steam distillation of a mixture of the two compounds is
 - (A) hyperconjugation
 - (B) hydrogen bonding
 - (C) the ortho-effect
 - (D) resonance
 - (E) symmetry
- 13. A hexapeptide is hydrolyzed to the dipeptides Ileu-Val, Ala-Pro, and Lys-Leu. Carboxypeptidase acts on the hexapeptide to liberate valine, and 2, 4-dinitrofluorobenzene reacts with the hexapeptide to yield, after hydrolysis, 2, 4-dinitrophenylalanine. Which of the following is the amino acid sequence of the hexapeptide?
 - (A) Ala-Pro-Lys-Leu-Ileu-Val
 - (B) Val-Ileu-Lys-Leu-Pro-Ala
 - (C) Ileu-Val-Ala-Pro-Lys-Leu
 - (D) Val-Ala-Pro-Lys-Leu-Ileu
 - (E) Lys-Leu-Ala-Pro-Ileu-Val
- 14. Which of the following reactions is NOT a typical reaction of the carbonyl group ($\geq C = O$)?


(A)
$$>C=O + H_2 \xrightarrow{Pt} >CHOH$$

(B) $>C=O + H_2N-OH \longrightarrow >C=N-OH + H_2O$
(C) $>C=O + CH_3Br \longrightarrow >C-O-CH_3$
Br
(D) $>C=O + HCN \xrightarrow{OH^-} >C-OH$
(E) $>C=O + RMgBr \longrightarrow >C-OMgBr$
R



- evolution of hydrogen. The compound could not be acetylated under the normal conditions for acetylation. The compound resisted oxidation under mild conditions and under vigorous conditions yielded only products of molecular weight much smaller than the unknown. On the basis of these facts the compound is
 - (A) a primary alcohol
 - (B) an aldehyde
 - (C) a secondary alcohol
 - (D) a tertiary alcohol
 - (E) a secondary amine

(D) II and IV

25. Compounds that are incapable of optical activity include which of the following?

1	國	立	清	華	大	與子	命	題	紙	
95	學年度_生	醫工程與.	環境科學	_系(所)	乙(環)	竟分子科學) 組碩士	班入學考	試	
科目_有機	化學及物理	里化學 利	斗目代碼	<u>3104</u> ‡	<u>+ 9 </u>	頁第 <u>9</u> 頁	〔*請在	【答案卷十	入作答	
二、物理化	上學									
計算問答題 (50%; 每題十 分;務必作答於答案卷內) 1. The internal energy of a perfect monatomic gas relative to its value at T = 0 K is (3/2)nRT. Calculate (a) (∂P/∂V) _T (b) (∂U/∂P) _T (c) (∂H/∂V) _T (d) (∂U/∂T) _P (e) C _P -C _V (10%)										
2. The vapor pressure of mercury at 536K is 103 torr. Estimate the normal boiling point of mercury. The enthalpy of vaporization of Hg ₍₁₎ is 58.7 kJ/mol. (Hg: 200.59 g/mol) (10%)										
3. For heating α mol of liquid water from T _{in} to T _{final} K (T _{final} < 373K) at a constant pressure of 1 atm, the system and the surroundings are connected only by a hot thin rod. Assume that the surroundings (consider the hot thin rod only) remain at T _{hot} (T _{hot} > 373 K) as the system warms up. The heat capacity of water at constant pressure is C _p (J/mol K). Calculate the entropy change of the process and show that this process is spontaneous. (10%)										
4. A possib	4. A possible mechanism for $C_2H_6+H_2\rightarrow 2CH_4$ is									
(1) C_2H_6	$\Rightarrow 2CH_3$		K	(equilibri	um cons	tant)				
	$H_2 \rightarrow CH_4 +$		k ₁	•	·					
	 (3) H + C₂H₆→CH₄ + CH₃ k₂ (rate constant) (a) Derive the rate law assuming that the first reaction is at equilibrium, and the H atom concentration is small. 									
(b) Whic	(b) Which one is the rate-determining step? (10%)									
wavefun	for an electron ction $\psi = \chi$. What is t	Źsin(kπx)	, where k	is some co	onstant.				ed by the gy is zero, or	