國立清	華 大	學 命	題	紙
95 學年度生醫工程與環	境科學系(所)_	乙(環境分子科學) 組碍	自士班入學考試
科目 通 化 學 科目	代碼	頁第1頁 *言	青在【答	案卷卡】內作答
I. Multiple Choices. Please choose	the one alternative that	at best answers the c	uestion.	(50%, 2% of each).
 The diameter of the Earth is appreciate of the Earth, one would average density of about 4.5 g/cm³, what is the average density of all 11 g/cm³ [B] 5.6 g/cm³ 	find that the outerm m ³ . Farther down is ensity of the Earth's co	ost 2890 km (the o the core. If the a re?	crust and verage d	d the mantle) has an ensity of the Earth is
 2. Which response gives the correct ransition metal atom in [Co(NH [A] C.N. = 2; O.N. = +3 [D] C.N. = 6; O.N. = +2 	$_{3}_{2}(H_{2}O)_{2}Cl_{2}]^{+}?$ [B] C.N. = 4; C).N. = +1		
 ^{3.} Calculate the activity of Mg²⁺ in a [A] 0.031 M [B] 0.015 M 	solution containing 0	.01 M MgCl ₂ and 0		a ₂ SO ₄ . [E] 0.0018 M
4. When 38.0 mL of 0.125 M H ₂ SO. The PbSO ₄ is then filtered from have a mass of 0.0306 g with sep the original solution?	the solution, dried, ar	nd weighed. If the	recover	red PbSO ₄ is found to
[A] 3.10×10^{-4} M [D] 3.11×10^{-3} M	[B] 1.55×10^{-4} M [E] 1.55×10^{-3} M		[C] 6	.20 × 10 ⁻³ M
 5. 9.45 g of liquid hexane (C₆H₁₄) i 21°C and ignited, yielding carbon the gas pressure inside the vessel 	dioxide and water.		-	
[A] 3.09 atm [B] 13.15 a		[D] 10.9 atr	n	[E] 12.6 atm
6. Calculate the standard enthalpy following information:	of formation (in kca	al/mol) of liquid m	ethanol,	$CH_3OH(1)$, using the
$C(graph) + O_2 \rightarrow CO_2(g)$ $H_2(g) + (1/2)O_2 \rightarrow H_2O(g)$ $CH_3OH(1) + (3/2)O_2(g) \rightarrow C(g)$	(1)	$\Delta H^{\circ} = -393.5 \text{ k}$ $\Delta H^{\circ} = -285.8 \text{ k}$ $\Delta H^{\circ} = -726.4 \text{ k}$	J/mol	
[A] -1,691.5 [B] -238.7	[C] -57.0	[D] 238.7		[E] 47.1

	國	立	_	清	華	大	學	命	題	紙	
	95 粤	- 年度	生醫工利	呈與環境	2科學	_系(所)	_乙(環	境分子科	<u> 學)</u> 組	碩士班入學	學考試
科目	音	通化	學	_ 科目	代碼31	101共	6_頁第	頁	*請在【	答案卷卡】	內作答
[.	A] 0, diar				[B] 6, 0	d electron diamagnet paramagne	ic		C] 4, diama	agnetic	I
so to	olution ha	the pH to	ljusted 1 5.2?	to 5.0 by	y addition		H. How	many mo		OH is furt	ne pH of the her required 96 M
r [[[[eactivity A] a Lew B] there i C] there a D] nitrog	is reasona is structu s no valio	able inas re canno 1 Lewis ance stru t form n	smuch as ot be wri structure actures fe aultiple l	s itten for t e possible or azide i bonds.	he azide i e for the a ion but no	on that ha zide ion.	as nitroge	n formal cl	e CO ₂ mole	
10.	estimate [A] BE(0 [B] BE(0 [C] BE(0 [D] BE(0	i by C=C) - 2] C=C) + B C-O) + B D-H) + B	BE(C-C E(O-H) E(C-C) BE(C=C)	C) – BE() – 2BE() – BE(C) – BE(C	C–O) (C–C) – 1)–H) – B C–H) – B	BE(C–O)	- BE(C–0	C)	water to	form C ₂ H	50H can be
11.	11. According to VSEPR theory, which one of the following molecules should have a geometry that is trigonal bipyramidal?										
	[A] SF ₄		[B]] XeF ₄		[C] NF	3	[D] S	F ₆	[E] PF₅	
12.	What is [A] Fe ³⁺	the centra		ion in vi] Fe ²⁺		[C] Co	2+	[D] N	1g ²⁺	[E] Ni ²⁻	+
13						*		8.9 kJ/mo	l, and its	normal boi	iling point is
						exane at 2 [C]117		[D] 3	370 torr	[E] 759) torr.

	國	立	清	華	大	學	命	題	紙	
	95 學年,	度生	醫工程與環	境科學	_系(所)	乙(環	境分子和	斗學) 組	碩士班入學	學考試
科目	普 通	化	學 科目	代碼3	<u>101</u> _共_	6_頁第	_3頁	*請在【	答案卷卡】	內作答
			ic pressure o) L of solutio:			ed from 13	3.7 g of	the electro	olyte HCl	and enough
			[B] 1.10 atm			[D]] 17.9 at	m [E]	35.9 atm	
hal		re four	of methyl nd to be 161 : /mol).		-					
[A]	6.17 × 10) ⁻³	[B] 31.4	[C]] 78.2	[D]124	[E]	163	
tab [A] [C] [D [E] 17. Yo ace	le, which] bond stre] withdraw] solubility] percent i Le Châte u have 50 etate (CH ₃	one of ength ving eff onic ch lier's p 0.0 mI COON	naracter of the	g factors of e H–X bo solution c will the p	lominates i nd ontaining (in affecting).20 M ace	g the aci	d strength?	H) and 0.3	0 M sodium
			[B] 4.74] 4.56	[D] 4.92	[E]] 5.07	
are sol	e added to lution? (K	$(Ag_2) = 2.$	ns both answe mL of 0.12 M CrO ₄) = 1.1 × 9 × 10 ⁻⁶ M. 060 M	M AgNO: 10 ⁻¹²) [B]	? What	is the con $= 0.060 \text{ M}$	centratio	on of the s	ilver ion 1	remaining in
the cn alt [A	CF ₃ C e analysis 1 ³ molecu	$O + O_3$ of which $le^{-1} s^{-1}$ $5 \text{ km, v}^{-12} \text{ M}^{-12}$		D ₂ d an Arrh l/mol, res nperature [B]	enius freq pectively.	uency facto Calculat M ⁻¹ s ⁻¹	or (A) ar		for this re	eaction at an

	國	立	清	華	大	學	命	題	紙	
	95 學年度	支_生醫:	工程與環:	境科學	_系(所)	乙(環	境分子科	斗學) 組	碩士班入學	善考試
科目_	普通	化學	科目	代碼_3	<u>101</u> _共_	6_頁第	_4_頁	*請在【	答案卷卡】	內作答
Th		formation he Gibb's	is Zn(s) free ener	+ 1/2 O ₂ (gy of Zn((g) → ZnO D(s) is -313	D(s). Wh 8.2 kJ/mol	at is the ?	energy ur		chargeable. It operating
1	ccording to					the set o	f hybrid	orbitals u	used when a	a Period 4
			d^2p^2		~	[D] sp ³		[E] dsp ²	
[A [B [C [D [E 23. R		tion of two g MO is lo tion of two with a bo e moleculo relates t	o atomic o ower in en o 2 <i>p</i> orbit ond order o e having a he vapor	probitals printing that als may re of zero want an even no pressure	roduces on a the two a esult in eit ill not be s amber of e of the sol	te bonding tomic orbi her σ or π table lectrons, a vent abov	and one tals from MOs. Ill electro	antibondin which it i	ng MO. is formed. e paired.	ction in the
	lution. Whi] Raoult's I		-			ment?				
-] Raoult's I						utions.			
-	C] Raoult's I [] Raoult's I			~ ~						
	[] None of t	<u> </u>			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					
m sta [A [E	ore interest atements ab A] The size B] The value moment C] The value	ted in the oout the el of an atom ence elec um quant nce electu	e arrange ectron com n is associ- etrons of um number cons of at	ement of nfiguratio iated with atoms in ers. oms in a	the elect ons and the the angul a partic particular	rons for ir quantum ar momen ular grouj group hav	their stu n number tum quar p have	idies. W rs is correct ntum numb the same	hich of the et? per. principal a	chemists are e following and angular um quantum
_		numbers	for the el	ectrons te	quantum n ell us little		relative e	mergies of	the electron	ns.

	國	立	7月	平	大	子	命	題	紙	
	95 學年度	生醫	工程與環	境科學_	_系(所)_(乙 (環均	竟分子科學	學)_組碍	員士班入學	考試
斗目	普通	化學	科目	代碼	31016	_頁第_	_ <u>5_</u> 頁 <u>*</u>	請在【答	案卷卡】	內作答
		-			mpose proteir					
					tein at a rate o	-	-			
	-	t would	be the rat	e of prot	ein decomposi	ition by	2 g bacte	ria if the	protein co	ncentratio
	s 5 mg/L.	1	D1 10 ~/d	0.17	[C] 13.4 g/	dav	[D] 15 c	-/dov	FE1 10	aldou
Į2	Aj 0.7 g/uay	1	DI IV g/u	ау	[C] 13.4 g/	uay	ני נען	g/day	[L] 10	g/uay
As	ample of sol	lid naph	thalene is	introduc	ed into an eva	acuated	flask. U	lse the da	ita helow t	o calculz
		~			lene ($C_{10}H_8$) in					o oaroure
5110	oquinonum	, apor F	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				.5ik 4t 55 (
	Common	nda		ΛH	° _f (25°C)		ΔG°f	(25°C)		
	Compounds				78.5 kJ/mol			201.6 kJ/mol		
	$C_{10}H_8(s)$						201.6	5 kJ/mol		
	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cry) stallizes		78. 150 ic close-	5 kJ/mol .6 kJ/mol packed structu		224.1	kJ/mol) and ha
	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cry) stallizes		78. 150 ic close-	5 kJ/mol .6 kJ/mol		224.1	kJ/mol) and has
der	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3) stallizes g/cm ³ .	Please c	78. 150 ic close-j alculate	5 kJ/mol .6 kJ/mol packed structu the atomic radi	ius of go	224.1 face-cente	kJ/mol ered cubio meters. ('	7 %)	
der V. A s	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution cont) stallizes g/cm ³ . ains Ag	Please c , ⁺ , Cu ²⁺ , Z	78. 150 ic close-j alculate	5 kJ/mol .6 kJ/mol packed structu	ius of go	224.1 face-cente	kJ/mol ered cubio meters. ('	7 %)	
der V. A s	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3) stallizes g/cm ³ . ains Ag	Please c , ⁺ , Cu ²⁺ , Z	78. 150 ic close-j alculate	5 kJ/mol .6 kJ/mol packed structu the atomic radi	ius of go	224.1 face-cente	kJ/mol ered cubio meters. ('	7 %)	
der V. A s the	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contesse ions from) stallizes g/cm ³ . ains Ag	Please c 5 ⁺ , Cu ²⁺ , Z on. (8 %)	78. 150 ic close-j alculate t	5 kJ/mol .6 kJ/mol packed structu the atomic radi	ius of go develop	224.1 face-cente old in picc a qualitat	kJ/mol ered cubio meters. (ive analys	7 %)	
der V. A s the /. A co	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contesse ions from	stallizes g/cm ³ . ains Ag solutic	Please c ⁺ , Cu ²⁺ , Z on. (8 %) nd contair	78. 150 ic close-palculate for n^{2+} and 0 ins the following	5 kJ/mol .6 kJ/mol packed structu the atomic radi Ca ²⁺ . Please of lowing physico	ius of go develop ochemic	224.1 face-cente old in picc a qualitat	kJ/mol ered cubic ometers. (' ive analys ies:	7 %) sis scheme	
der V. A s the /. A co (1) 7	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contest ions from coordination of the particle	stallizes g/cm ³ . ains Ag solutic compou empiric	Please c ^t , Cu ²⁺ , Z on. (8 %) nd contair al formula	78. 150 ic close-particulate for n^{2+} and (in the following	5 kJ/mol .6 kJ/mol packed structu the atomic radi Ca ²⁺ . Please of lowing physico CrO ₄)Cl ₂ (NH ₃)	ius of go develop ochemic	224.1 face-cente old in picc a qualitat	kJ/mol ered cubic ometers. (' ive analys ies:	7 %) sis scheme	
der V. A s the /. A cc (1) 7 (2) 1	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contest ions from coordination of The particle It has A (red)	stallizes g/cm ³ . ains Ag solutic compou empiric) and B	Please c ⁽⁺ , Cu ²⁺ , Z ^{(n.} (8 %) nd contair al formula (blue) cry	78. 150 ic close-particulate form a local culate form a sthe following the foll	5 kJ/mol .6 kJ/mol packed structu the atomic radii Ca^{2+} . Please of lowing physico CrO_4)Cl ₂ (NH ₃) s.	ius of go develop ochemic)4, where	224.1 face-cente old in picc a qualitat al propert e M is an o	kJ/mol ered cubio meters. (' ive analys ies: unknown	7 %) sis scheme element.	to separ
der V. A s the (1) 7 (2) 1 (3) V	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contacts from coordination of The particle It has A (red) When 1.0 m	stallizes g/cm ³ . ains Ag solutic compou empiric) and B nole of	Please c ⁽⁺ , Cu ²⁺ , Z ^{(n.} (8 %) nd contair al formula (blue) cry	78. 150 ic close-particulate form a local culate form a sthe following the foll	5 kJ/mol .6 kJ/mol packed structu the atomic radi Ca ²⁺ . Please of lowing physico CrO ₄)Cl ₂ (NH ₃)	ius of go develop ochemic)4, where	224.1 face-cente old in picc a qualitat al propert e M is an o	kJ/mol ered cubio meters. (' ive analys ies: unknown	7 %) sis scheme element.	to separ
der V. A s the (1) 7 (2) 1 (3) V i:	$C_{10}H_8(s)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contest ions from coordination of The particle It has A (red) When 1.0 m mmediately.	stallizes g/cm ³ . ains Ag solutic compou empiric) and B nole of	Please c , ⁺ , Cu ²⁺ , Z on. (8 %) nd contain al formula (blue) cry A or B	78. 150 ic close-particulate to calculate to n^{2+} and (Constant form the following the fol	5 kJ/mol .6 kJ/mol packed structur the atomic radii Ca^{2+} . Please of lowing physics CrO_4)Cl ₂ (NH ₃) s. ith 1.0 mole	ius of go develop ochemic 04, where AgNO	224.1 face-cente old in picc a qualitat al propert e M is an 3, 0.5 mo	kJ/mol ered cubic ometers. (' ive analys ies: unknown ele of a	7 %) sis scheme element. red precip	to separ
der V. A s the (1) 7 (2) 1 (3) W ir (4) A	$C_{10}H_8(s)$ $C_{10}H_8(g)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contended solution contended solution contended solution contended solution contended ordination contended The particle It has A (red) When 1.0 mmediately. After the real	stallizes g/cm ³ . ains Ag solutic compou empiric) and B sole of action ir	Please c ^t , Cu ²⁺ , Z on. (8 %) nd contair al formula (blue) cry A or B n (3), 1.0 r	78. 150 ic close-palculate f alculate f in ²⁺ and (ins the following a is KM((stal form reacts we mole of A	5 kJ/mol .6 kJ/mol packed structu the atomic radii Ca^{2+} . Please of lowing physico CrO_4)Cl ₂ (NH ₃) s.	ius of go develop ochemic 04, where AgNO	224.1 face-cente old in picc a qualitat al propert e M is an 3, 0.5 mo	kJ/mol ered cubic ometers. (' ive analys ies: unknown ele of a	7 %) sis scheme element. red precip	to separa
der V. A s the (1) 7 (2) 1 (3) V i: (4) 4 t	$C_{10}H_8(s)$ $C_{10}H_8(g)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contended solution	stallizes g/cm ³ . ains Ag solutic compou empiric) and B nole of action ir nole of	Please c , Cu ²⁺ , Z on. (8 %) nd contair al formula (blue) cry A or B a (3), 1.0 r white prec	78. 150 ic close-particulate for a con $^{2+}$ and (Con $^{2+}$ and (C	5 kJ/mol .6 kJ/mol packed structur the atomic radii Ca^{2+} . Please of lowing physico CrO_4)Cl ₂ (NH ₃) s. ith 1.0 mole A reacts very s	ius of go develop ochemic 04, where AgNO: lowly w	224.1 face-center old in picco a qualitat eal propert e M is an o s, 0.5 mo vith 1.0 mo	kJ/mol ered cubic ometers. (' ive analys ies: unknown de of a silv	7 %) sis scheme element. red precip ver oxalate	to separa
der V. A s the (1) 7 (2) 1 (3) V i: (4) 4 t	$C_{10}H_8(s)$ $C_{10}H_8(g)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contended solution	stallizes g/cm ³ . ains Ag solutic compou empiric) and B nole of action ir nole of	Please c , Cu ²⁺ , Z on. (8 %) nd contair al formula (blue) cry A or B a (3), 1.0 r white prec	78. 150 ic close-particulate for a con $^{2+}$ and (Con $^{2+}$ and (C	5 kJ/mol .6 kJ/mol packed structur the atomic radii Ca^{2+} . Please of lowing physics CrO_4)Cl ₂ (NH ₃) s. ith 1.0 mole	ius of go develop ochemic 04, where AgNO: lowly w	224.1 face-center old in picco a qualitat eal propert e M is an o s, 0.5 mo vith 1.0 mo	kJ/mol ered cubic ometers. (' ive analys ies: unknown de of a silv	7 %) sis scheme element. red precip ver oxalate	to separa
der V. A s the (1) 7 (2) 1 (3) V i: (4) 4 t (5) 4	$C_{10}H_8(s)$ $C_{10}H_8(g)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contended solution contended solution contended solution contended coordination of The particle It has A (red) When 1.0 m mmediately. After the reading so form 2.0 m After the reading	stallizes g/cm ³ . ains Ag solution compou empiric) and B nole of nole of ction in	Please of t, Cu ²⁺ , Z on. (8 %) nd contain al formula (blue) cry A or B a (3), 1.0 n white preco (3), 1.0 n	78. 150 ic close- f alculate f alculate f n^{2+} and f is the following the following the followi	5 kJ/mol .6 kJ/mol packed structur the atomic radii Ca^{2+} . Please of lowing physico CrO_4)Cl ₂ (NH ₃) s. ith 1.0 mole A reacts very s	ius of go develop ochemic 04, where AgNO: lowly w further	224.1 face-cented old in picco a qualitat cal propert e M is an o s, 0.5 mo with 1.0 mo with 1.0 mo	kJ/mol ered cubic ometers. (' ive analys ies: unknown de of a silv	7 %) sis scheme element. red precip ver oxalate	to separa
der V. A s the /. A co (1) 7 (2) 1 (3) V i: (4) <i>J</i> t (5) <i>J</i> Fron	$C_{10}H_8(s)$ $C_{10}H_8(g)$ $C_{10}H_8(g)$ old (Au) cryansity of 19.3 solution contended solution contended solution contended solution contended coordination of The particle It has A (red) When 1.0 m mmediately. After the reading so form 2.0 m After the reading	stallizes g/cm ³ . ains Ag solutic compou empiric) and B nole of action in nole of ction in	Please c , Cu ²⁺ , Z on. (8 %) nd contain al formula (blue) cry A or B n (3), 1.0 m white prec (3), 1.0 m hown abov	78. 150 ic close-palculate f alculate f in ²⁺ and (ins the following is KM((stal form reacts we mole of A cipitate. hole of B we, please	5 kJ/mol .6 kJ/mol packed structu the atomic radi Ca ²⁺ . Please of lowing physico CrO ₄)Cl ₂ (NH ₃) s. ith 1.0 mole A reacts very s does not react	ius of go develop ochemic 04, where AgNO: lowly w further	224.1 face-cented old in picco a qualitat cal propert e M is an o s, 0.5 mo with 1.0 mo with 1.0 mo	kJ/mol ered cubic ometers. (' ive analys ies: unknown de of a silv	7 %) sis scheme element. red precip ver oxalate	to separa
der V. A s the V. A co (1) 7 (2) 1 (3) V i: (3) V i: (4) 4 t (5) 4 Fron (a)	$C_{10}H_8(s)$ $C_{10}H_8(g)$ Old (Au) cryansity of 19.3 solution contrast of 19.3 solution contrast of 19.3 coordination of 1	stallizes g/cm ³ . ains Ag a solutic compou empiric) and B nole of action in nole of ction in nation sl ation nu	Please c please c please c place c	78. 150 ic close- alculate f in ²⁺ and C in s the foll a is KM(C stal form reacts w mole of A cipitate. hole of B we, please M. (3%)	5 kJ/mol .6 kJ/mol packed structu the atomic radi Ca ²⁺ . Please of lowing physico CrO ₄)Cl ₂ (NH ₃) s. ith 1.0 mole A reacts very s does not react	ius of go develop ochemic 04, where AgNO: lowly w further e follow	224.1 face-center old in picco a qualitat eal propert e M is an o s, 0.5 mo with 1.0 m with 1.0 m	kJ/mol ered cubic ometers. (' ive analys ies: unknown de of a silv	7 %) sis scheme element. red precip ver oxalate	to separa

Ŧ	國	立 沪	青 華	大	學	命	題	紙	
	95 學年度	生醫工程	與環境科學	系(所)_乙(環	境分子科學)_組碩士	班入學考試	
科目	普通	化學	科目代碼_	_3101共	6頁第	<u>6_</u> 頁 <u>*</u> 討	青在【答案	卷卡】內作答	
VI. The quantum-mechanical treatment of the hydrogen atom gives the energy, E, of the electron as a function of the principal quantum number, n:									
	$E = -\frac{1}{8}$	$\frac{h^2}{\pi^2 m_e a_0^2 n^2}$	(n=1, 2, 3,)			(1)		
Wł	nere h is Pl	anck's const	ant, m ₀ is th	e electron	mass, and	a ₀ is 52.92	× 10 ⁻¹² m.	Please write the	
	expression	of equation	(1) in the	form E =	- (constant	t) $\frac{1}{n^2}$. Evalu	ate the co	onstant (in J), and	
	compare th	ne expression	with the cor	responding	expression	n from Bohr's	theory. (6	%)	
		neric concent mg/m ³ at 0°(e is 345 pr	om under ST	P conditio	n. Please convert	
		rtial (valence ion of the el						on of the atom and (6 %)	
	IE ₁	IE ₂	IE ₃	IE ₄	IE ₅	IE ₆	IE ₇	IE ₈	
	999	2251	3361	4564	7013	8495	27106	31669	
Note: '	The atomic	masses of ele	ements are as	s follows:					
ŀ	H = 1.0	C = 12.0	O = 16.	0 F =	19.0	Na=23.0	Mg	= 24.3	
S	5 = 32.1	Cl = 35.5	Cr = 52	.0 Ag	= 107.9	Zn = 65.4	I = 1	26.9	
ŀ	Au = 197.0	Pb = 207.2	2						