八十四學年度原多科學研究所 ^乙 組碩士班研究生入學考試 科目 分析化學 科號 3202 共 3 頁第 / 頁 #讀在試卷【答案卷】內作答

- 1. a). Calculate the pH of a solution that is 0.200 M in NH3 and 0.300 M in NH4C1. The base dissociation constant for NH3 is 1.76×10^5 .
 - b). Calculate the pH change that takes place when a 100-ml portion of 0.0500 N HCl is added to 400-ml of the buffer solution described in a).
- 2. Calculate the potential of the cell SEC | aqueous solution | Hg when the aqueous solution is
 - a). $7.4 \times 10^{-8} \text{ M Hg}^{2+}$
 - b). $Hg^{2+}(2.00 \times 10^{-3} \text{ M})$, $OAc^{+}(0.100 \text{ M})$ $\{Hg^{2+} + 20Ac^{+} \longrightarrow Hg(OAc)_{2}(aq) \mid K_{1} = 2.7 \times 10^{8}\}$

- 3. Manganese is often determined spectrophotometrically as the permanganate ion (MnO_4^-) whose aqueous solutions are a deep purple color $(\lambda_{max}^{2+}-525 \text{ nm})$. A 1.00×10^{-4} M solution of KMnO₄ gives an absorbance of 0.585 when a 1.00 centimeter cell is used at 525 nm. A 0.500 gram sample of a manganese-containing alloy is dissolved in acid, and all the manganese is converted to MnO_4^- by periodate oxidation. The sample is then diluted to 500 milliliters in a volumetric flask, and its absorbance, taken at 525 nanometers in a 1.00 centimeter cell, is found to be 0.400. Assume that the permanganate system follows Beer's law and calculate the weight percent of manganese in the unknown.

 (At. Wt. of Mn=54.94)
- 4. Consider a cell consisting of a copper electrode in contact with 1.00 M $\rm Cu^{2+}$, a cadmium electrode in contact with 1.00 M $\rm Cd^{2+}$, and a connecting salt bridge. The cell has a resistance of 4.00 Ω .
 - a). Calculate the potential needed to develop a current of 0.0200 Å in the electrolytic cell

 $Cu + Cu^{2+}(1.00 \text{ M}) \parallel Cd^{2+}(1.00 \text{ M}) \parallel Cd$

b). Calculate the cell potential when there is a current of 0.0200 A in the galvanic cell

 $Cd + Cd^{2+}(1.00 M) + Cu^{2+}(1.00 M) + Cu$

國立 清 華 大 學 命 題 紙

八十四學年度**原と科学が**新して 組領士班研究生入學考試 科目 <u>分 村 イレ 学</u>科號 <u>3202</u>共 3 頁第<u>2</u> 頁 *請在試卷【答案卷】內作答

The standard electrode potentials are

$$Cu^{2-} + 2e^{-} \longrightarrow Cu(s)$$
 $E^{0} = -0.337 \text{ V}$

$$Cd^{2-} + 2e^{-} \longrightarrow Cd(s)$$
 $E^{0} = -0.403 \text{ V}$

(12%)

5. Calculate the solubility of $\text{Fe}(OH)_3$ in water.

(Fe
$$^{3-}$$
) (OH $^{-}$) 3 = 4×10^{-38}

$$(H_30^+)$$
 (OHT) $= 1.00 \times 10^{-14}$

Note: the validity of assumption should be checked in order to avoid a faulty result. (12%)

6. There has been much discussion of the titration of Fe 2 with Ce 4 . Under the conditions of this problem, the \mathcal{L}^o values for the half reactions of Fe and Ce are as given as follows

$$\mathrm{Fe^{3+}} + \mathrm{e^{-}} + \mathrm{Fe^{2+}}$$
 $E^{o}_{\mathrm{Fe}} = 0.77 \text{ voits}$

$$Ce^{4^{+}} + e^{-} \leftarrow Ce^{3^{+}}$$
 $E^{o}_{Ce} = 1.61 \text{ volts}$

The endpoint solution potential for a titration of Fe^{2+} by Ce^{4+} is found to be 1.19 volts. It would be nice to detect the endpoint with an indicator. Two new indicators are

di-Bolanc In(ox) +
$$2e^+ \rightleftharpoons In(red)$$
 $\mathcal{E}'_{olig} = 0.76 \text{ Volt}$

p-nitro-di-Bolane
$$In(ox) = 2e \longrightarrow In(red) = E^{o}_{pn} - I.01 \text{ volt}$$
(*pa*) violet colorless

Assume that, for either indicator, the color change from colorless to violet is visible when (In(ox)) / (In(red)) = 10. Would either, or both indicators be subable for the Fe²⁺-Ce⁴⁻ titration? Explain in your teason.

- 7. Predict the order of elution of
 - i). n-hexade, n-hexadol, benzene
 - ii). ethyl acetate, diethyl ether, nitrobutanefor a) a normal-phase separation, and b) a reversed-phase separation.

(10%)

國 立 清 華 大 學 命 題 紙

八十四學年度 **原文科學科的**新 乙 組碩士班研究生入學考試 科目 <u>分析化學</u> 科號 3 2 0 4 共 3 頁第 3 頁 *請在試卷【答案卷】內作答

- Discribe and compare the differences between the following terms:
 - a). Sensitivity / Detection limit
 - b). Population standard derviation (σ)/Sample standard derviation(s)
 - c). Conjugate acid/Conjugate base
 - d). Concentration polarization / Kinetic polarization
 - e). Adsorption chromatography / Partition chromatography
 - f). Isocratic elution/Gradient elution

(20%)