注意:考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。

國立清華大學 108 學年度碩士班考試入學試題

系所班組別:核子工程與科學研究所 甲組 考試科目(代碼):流體力學(3204)

-作答注意事項-

- 1. 請核對答案卷(卡)上之准考證號、科目名稱是否正確。
- 作答中如有發現試題印刷不清,得舉手請監試人員處理,但不得要求解釋題意。
- 3. 考生限在答案卷上標記「**▶**由此開始作答」區內作答,且不可書寫姓名、 准考證號或與作答無關之其他文字或符號。
- 4. 答案卷用盡不得要求加頁。
- 5. 答案卷可用任何書寫工具作答,惟為方便閱卷辨識,請儘量使用藍色或 黑色書寫;答案卡限用 2B 鉛筆畫記;如畫記不清(含未依範例畫記) 致光學閱讀機無法辨識答案者,其後果一律由考生自行負責。
- 6. 其他應考規則、違規處理及扣分方式,請自行詳閱准考證明上「國立清 華大學試場規則及違規處理辦法」,無法因本試題封面作答注意事項中 未列明而稱未知悉。

系所班組別:核子工程與科學研究所甲組(工程組)

考試科目(代碼):流體力學(3204)

共_4_頁,第_1_頁 *請在【答案卷】作答

1. (20%)

- (1) Please define the friction factor for pipe flow.
- (2) Please explain the dependence of friction factors for the laminar flow and turbulent flow on the surface roughness.
- (3) Plot the Moody diagram and explain it as possible as you can.

2. (15%)

As shown in Fig. 1, the fluid velocity along the streamline is $\vec{V} = V \vec{s}$.

The acceleration can be expressed as

$$\vec{a} = \frac{d\vec{V}}{dt} = a_s \vec{s} + a_n \vec{n}$$

Please prove

$$a_s = V \frac{dV}{ds}$$
 and $a_n = \frac{V^2}{R}$

Figure 1

系所班組別:核子工程與科學研究所甲組(工程組)

考試科目(代碼):流體力學(3204)

3. (20%)

Consider steady, incompressible, laminar flow of a Newtonian fluid in an infinitely long round pipe annulus of inner radius R_i and outer radius R_o (as shown in Fig. 2). Ignore the gravity effect. A constant negative pressure gradient $\partial p/\partial x$ is applied in the x-direction, $\frac{\partial p}{\partial x} = \frac{(P_2 - P_1)}{(x_2 - x_1)}$.

Derive an expression for the velocity field in the annular space in the pipe.

Hint:

The velocity field is axisymmetric with no swirl, implying that $u_{\theta} = 0$ and

$$\frac{\partial}{\partial \theta} = 0$$

Figure 2

系所班組別:核子工程與科學研究所甲組(工程組)

考試科目(代碼):流體力學(3204)

共_4_頁,第_3_頁 *請在【答案卷】作答

4. (25 %)

As the fluid with the velocity of U passes over a flat plate with the length of L (shown in Fig. 3), the boundary layer is laminar for a short distance downstream from the leading edge. In this flow condition, we consider a steady two dimensional laminar flow with negligible gravitational effect. The governing equations can be reduced to the followings. (δ is the boundary layer thickness)

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x} + \frac{\mu}{\rho}\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)$$

$$u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y} + \frac{\mu}{\rho}\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right)$$

Simplify above equations into the Boundary layer equation (as shown below) using the dimensional analysis. In addition, please find the relationship of boundary thickness and Reynolds number.

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2}$$

Hint: (1) L>> δ

Figure 3

系所班組別:核子工程與科學研究所甲組(工程組)

考試科目(代碼):流體力學(3204)

共 4 頁,第 4 頁 *請在【答案卷】作答

5. (20 %)

A liquid of density ρ and viscosity μ flows by gravity through a hole of diameter d in the bottom of a tank of diameter D (Fig. 4). At the start of the experiment, the liquid surface is at height L above the bottom of the tank, as sketched. The liquid exits the tank as a jet with average velocity U straight down as also sketched. Using dimensional analysis of Buckingham Pi Theorem, generate a dimensionless relationship for V as a function of the other parameters in the problem. Identify any established nondimensional parameters that appear in your results.

(Hint: There are three length scales in this problem. For consistency, choose L as your length scale.)

Figure 4