注意:考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。

國立清華大學 108 學年度碩士班考試入學試題

系所班組別:核子工程與科學研究所 甲組 考試科目(代碼):核工原理(3202)

-作答注意事項-

- 1. 請核對答案卷(卡)上之准考證號、科目名稱是否正確。
- 2. 作答中如有發現試題印刷不清,得舉手請監試人員處理,但不得要求解 釋題意。
- 3. 考生限在答案卷上標記「**▶**由此開始作答」區內作答,且不可書寫姓名、 准考證號或與作答無關之其他文字或符號。
- 4. 答案卷用盡不得要求加頁。
- 5. 答案卷可用任何書寫工具作答,惟為方便閱卷辨識,請儘量使用藍色或 黑色書寫;答案卡限用 2B 鉛筆畫記;如畫記不清(含未依範例畫記) 致光學閱讀機無法辨識答案者,其後果一律由考生自行負責。
- 6. 其他應考規則、違規處理及扣分方式,請自行詳閱准考證明上「國立清華大學試場規則及違規處理辦法」,無法因本試題封面作答注意事項中未列明而稱未知悉。

國立清華大學 108 學年度碩士班考試入學試題

系所班組別:核子工程與科學研究所甲組(工程組)

考試科目(代碼):核工原理(3202)

共__1__頁,第__1__頁 *請在【答案卷、卡】作答

- 1. (20%, each 5%) Briefly explain the following terms:
 - A. Neutron diffusion and Fick's law
 - B. Neutron cross sections and the mean free path
 - C. Generation IV nuclear reactors
 - D. Nuclear Doppler effect

The following information is taken from the technical documents of a nuclear power plant: active core height = 3.5 m, total fuel loading = 90000 kg; density of $UO_2 = 10$ g/cm³; enrichment = 3 wt%; 150 fuel assemblies; 200 fuel pins per assembly; electrical generating capacity = 1000 MW; plant thermal efficiency = 30%.

- 2. (20%) Based on the above information, (a) What is the approximate thermal power output of the core? (b) What is the atom density of U-235 in the core? What is the mass of U-235 in the core?
- 3. (20%) Based on the above information, the core operates at full power for one year and then shuts down for refueling. During refueling, one-third of the fuel is replaced. What is the average burnup in units of megawatt days per metric ton (MWD/MTU) for the one-thid of the core initially removed?
- 4. (20%) Consider an infinite planar source emitting S neutrons per cm²/sec in an infinite diffusing medium. (a) Write down the diffusion equation and the corresponding source and boundary conditions; (b) Derive an expression for the neutron flux in full space.
- 5. (20%) For a homogeneous mixture of U-235 and sodium in which the uranium is present in a percentage of x wt%, (a) calulate the fuel utilization factor f and the infinite multiplication factor k_{∞} as a function of x; (b) estimate the critical uranium concentration (x=?).

TABLE 6.1 NOMINAL ONE-GROUP CONSTANTS FOR A FAST REACTOR*

Element or Isotope	-					
	σ_{γ}	σ_f	σ_a	$\sigma_{\rm tr}$	V	η
Na	0.0008	0	0.0008	3.3		
Al	0.002	0	0.002	3.1		
Fe	0.006	0	0.006	2.7	-	
235U	0.25	1.4	1.65	6.8	2.6	2.2
238U	0.16	0.095	0.255	6.9	2.6	0.97
239P	0.26	1.85	2.11	6.8	2.98	2.61

^{*}From Reactor Physics Constants, 2nd ed., Argonne National Laboratory report ANL-5800, 1963.