國立清華大學命題紙

106 學年度 __ 核子工程與科學研究所工程組 碩士班入學考試

科目 _ 核工原理 _ 科目代碼 _ 2802 _ 共 _ 2 _ 頁第 1 _ 頁 *請在【答案卷卡】內作答

解釋名詞: (20%)

- (a) Čeronkov radiation
- (b) LET
- (c) specific burnup
- (d) delayed critical
- (e) inhour

計算與證明題: (80%)

- 1. An initially pure sample of 1 Ci (curie) nuclide X_1 ($t_{1/2} = 13.86$ days) decays into nuclide X_2 ($t_{1/2} = 6.93$ days). Determine the <u>time</u> at which the activity of X_2 reaches its maximum, and also determine the value of this maximum activity in terms of Bq. (10%)
- 2. Show that the <u>energy</u> of the scattered photon (E') in the laboratory system after making Compton scattering collision with an electron is given by the form of (15%)

$$E' = \frac{E E_e}{E (1 - \cos \theta) + E_e},$$

where E is the incident-photon energy, E_e is the electron rest-mass, and θ is the scattering angle in the laboratory system. Also show that the <u>minimum energy</u> of the scattered photon (E'_{\min}) in Compton scattering is given by

$$E'_{\min} = \frac{E E_e}{2E + E_e}.$$

3. Given the data as follows:

cross section (b)	$_{1}\mathrm{D}^{2}$	₈ O ¹⁶
σ_s	4.7	4.2
σ_a	0.0005	0

Given the mass density of D_2O is 1.1 g/cm³. Avogadro's number is given by 0.602217×10^{24} #/mole and amu is equal to 1.6605×10^{-27} kg. Assume that D and O are isotropically scattered with neutrons (mass number = 1) in the CM system. The average energy loss of an isotropic scattering of an incident neutron (energy = E_0) with a single nucleus (mass number = A) is given by

$$\overline{\Delta E} = \frac{1}{2}(1-\alpha)E_0,$$

where α denotes the collision parameter. The corresponding average lethargy gain is given by

$$\xi = 1 + \frac{\alpha}{1 - \alpha} \ln \alpha \cdot$$

- (a) Determine the $\underline{\text{moderation power}}$ of D_2O . (10%)
- (b) Determine the <u>average number of elastic scattering collisions</u> that the 2 MeV neutron is needed to be made with D₂O, before it reaches 0.0253 eV. (10%)

國立清華大學命題紙

106 學年度 ___核子工程與科學研究所工程組__ 碩士班入學考試

科目 __核工原理__ 科目代碼 __2802__ 共 __2__ 頁第 __2__ 頁 *請在【答案卷卡】內作答

- 4. An infinite bare slab of moderator of thickness 2a containing uniformly distributed sources emitting S_0 neutrons/cm³-sec. Calculate the <u>number of neutrons per cm²-sec absorbed</u> within the slab. (15%)
- 5. Consider a spherical, multiplying <u>reactor core</u> is immersed in an infinite, non-multiplying <u>reflector</u>. Derive the <u>critical radius</u> of the spherical reactor core which satisfies the transcendental equation of the form as follows: (20%)

$$BR \cot BR - 1 = -\frac{D_r}{D_c} (\frac{R}{L_r} + 1),$$

where the subscripts c and r denote reactor core and reflector, respectively. Notice that ∇^2 for the spherical coordinate (if angular independence) is given by

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r}) = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}.$$